Answer:
Explanation:
Volume of silver cube = 2.42³ = 14.17 cm³
mass of silver cube = volume x density
= 14.17 x 10.49 = 148.64 gm
Volume of gold cube = 2.75³ = 20.8 cm³
mass of gold cube = 20.8 x 19.3 = 401.44 gm
specific heat of silver and gold are .24 and .129 J /g°C
mass of 112 mL water = 112 g
Heat absorbed = heat lost = mass x specific heat x temperature fall or rise
Heat lost by metals
= 148.64 x .24 x ( 85.4 -T) + 401.44 x .129 x ( 85.4 - T )
= (35.67 + 51.78 ) x ( 85.4 - T )
87.45 x ( 85.4 - T )
= 7468.23 - 87.45 T
Heat gained by water
= 112 x 1 x ( T - 20.5 )
= 112 T - 2296
Heat lost = heat gained
7468.23 - 87.45 T = 112 T - 2296
199.45 T = 9764.23
T = 48.95° C
Answer:
Answer is D.it gains and loses electrons.
Explanation:
I hope it's helpful!
We are told that there are 1.55 x 10²³ molecules of Cl₂ and we need to calculate the mass of these molecules. We need to do several conversions. The easiest will be to convert the amount of molecules to the number of moles present. To do this, we need to use Avogadro's number which is 6.022 x 10²³ molecules/mole.
1.55 x 10²³ molecules / 6.022 x 10²³ molecules/mole = 0.257 moles Cl₂
Now that we have the moles of Cl₂ present, we can convert this value to a mass of Cl₂ by using the molecular mass of Cl₂. The molecular mass is 70.906 g/mol.
0.257 moles Cl₂ x 70.906 g/mol = 18.3 g Cl₂
Therefore, 1.55 x 10²³ molecules of Cl₂ will have a mass of 18.3 g.
S and O would be on a polyatomic ion as I know of
Answer:- 1467 K
Solution:- It asks to calculate the kelvin temperature of the light bulb. Looking at the given info, it is based on ideal gas law equation, PV=nRT.
Given: 
V = 75.0 mL = 0.0750 L
P = 116.8 kPa
We know that, 101.325 kPa = 1 atm
So, 
= 1.15 atm
R is universal gas constant and it's value is
.
T = ?
Let's plug in the values in the equation and solve it for T.

0.08625 = 0.00005878(T)

T = 1467 K
So, the temperature of the light bulb would be 1467 K.