Answer:
Y = V / f where Y equals wavelength
4 Y1 = V / f1 for a closed pipe the wavelength is 1/4 the length of the pipe
2 Y2 = V / f2 for the open pipe the wavelength is 1/2 the length of the pipe
Y1 / Y2 = 2 = f2 / f1 dividing equations
f2 = 2 f1
the new fundamental frequency is 2 * 130.8 = 261.6
(The new wavelength is 1/2 the original wavelength so the frequency must double to produce the same speed.
Answer:

Explanation:
As we know that moment of force is given as

now we have


now from above formula we have

here we know that

so we have


According to the description given in the photo, the attached figure represents the problem graphically for the Atwood machine.
To solve this problem we must apply the concept related to the conservation of energy theorem.
PART A ) For energy conservation the initial kinetic and potential energy will be the same as the final kinetic and potential energy, so



PART B) Replacing the values given as,




Therefore the speed of the masses would be 1.8486m/s
Answer:
D.
Explanation:
Specifically, Special Relativity showed us that space and time are not independent of one another but can be mixed into each other and therefore must be considered as the same object, which we shall denote as space-time. The consequences of space/time mixing are: time dilation. and length contraction.
the correct answer is B. 1.27
Mechanical advantage of a lever is simply the ratio of the effort arm to the load arm.Effort arm is the distance from the pivot to the point of application of force while load arm is the distance of the lord from the pivot.
therefore, in this question, the effort arm is 0.28m while the load arm is 0.22 m. MA is calculated as follows: MA=effort arm/load arm
=0.28m/0.22m=1.27