Hola amigo como estas? is the answer. i took the diagnostic
Answer:
1- Yes, we can calculate the solubility of mineral compound X.
2- 0.012 g/mL.
Explanation:
<em>1- Using only the information above, can you calculate the solubility of X in water at 15.0 °C? </em>
The information available is:
The volume of water sample = 25.0 mL.
Weight of the mineral compound X after evaporation, drying, and washing = 0.30 g.
∴ Yes, we can calculate the solubility of mineral compound X.
<u><em>2- If you said yes, calculate it.</em></u>
∵ 25.0 mL of water sample contains → 0.30 g of the mineral compound X.
∴ 1.0 mL of water sample contains → ??? g of the mineral compound X.
1.0 ml of water sample will contain (0.3 g/25.0 mL) 0.012 g.
<em>∴ The solubility of the mineral compound X in the water sample is</em> <u><em>0.012 g/mL.</em></u>
<u><em></em></u>
<u>Answer:</u> The net ionic equation is written below.
<u>Explanation:</u>
Net ionic equation of any reaction does not include any spectator ions.
Spectator ions are defined as the ions which does not get involved in a chemical equation. They are found on both the sides of the chemical reaction when it is present in ionic form.
The chemical equation for the reaction of nickel (II) acetate and potassium hydroxide is given as:

Ionic form of the above equation follows:

As, acetate and potassium ions are present on both the sides of the reaction. Thus, it will not be present in the net ionic equation and are spectator ions.
The net ionic equation for the above reaction follows:

Hence, the net ionic equation is written above.
Answer:
Due to the accumulation of static charges/due to static electricity