Answer:
the answer is c
Explanation:
My reasoning is that its most likely
To solve for the number of moles, we simply have to use the Avogadros number which states that there are 6.022 x 10^23 molecules per mole. Therefore:
number of moles = 6.67 X 10^40 chlorine molecules / (6.022 x 10^23 molecules / mole)
number of moles = 1.108 x 10^17 moles
Cell wall:
-acts like a skin
- most selectively controls what is inside and outside of the cell
-rigid
Cell membrane:
-gives a plant cell
-not rigid
Explanation:
attribute of a person that often cannot be measured directly but can be assessed using numbers of indicators or manifest variables
Answer:
Mass = 42.8g
Explanation:
4 NH 3 ( g ) + 5 O 2 ( g ) ⟶ 4 NO ( g ) + 6 H 2 O ( g )
Observe that every 4 mole of ammonia requires 5 moles of oxygen to obtain 4 moles of Nitrogen oxide and 6 moles of water.
Step 1: Determine the balanced chemical equation for the chemical reaction.
The balanced chemical equation is already given.
Step 2: Convert all given information into moles (through the use of molar mass as a conversion factor).
Ammonia = 63.4g × 1mol / 17.031 g = 3.7226mol
Oxygen = 63.4g × 1mol / 32g = 1.9813mol
Step 3: Calculate the mole ratio from the given information. Compare the calculated ratio to the actual ratio.
If all of the 1.9831 moles of oxygen were to be used up, there would need to be 1.9831 × 4 / 5 or 1.5865 moles of Ammonia. We have 3.72226 moles of ammonia - Far excess. Because there is an excess of Ammonia, the Oxygen amount is used to calculate the amount of the products in the reaction.
Step 4: Use the amount of limiting reactant to calculate the amount of H2O produced.
5 moles of O2 = 6 moles of H2O
1.9831 moles = x
x = (1.9831 * 6 ) / 5
x = 2.37972 moles
Mass of H2O = Molar mass * Molar mass
Mass = 2.7972 * 18
Mass = 42.8g