Answer:
Explanation:
ignoring air resistance, the kinetic energy at water impact will equal the potential energy converted
½mv² = mgh
v = √(2gh)
v = √(2(9.81)2.1) = 6.4188... m/s
after impact, an impulse will result in a change of momentum.
There is a downward impulse due to gravity equal to the weight of the stone and an upward average force due to water resistance and buoyancy force.
FΔt = mΔv
(F - mg)Δt = m(vf - vi)
(F - mg) = m(vf - vi)/Δt
F = m(vf - vi)/Δt + mg
F = m((vf - vi)/Δt + g)
F = 1.05(((½(-6.4188) - -6.4188)/ 1.83) + 9.81)
F = 12.14198...
F = 12.1 N
The coefficient of static friction is 0.222
Explanation:
In order for the car to remain in circular motion, the frictional force must be able to provide the necessary centripetal force. Therefore, the car will start skidding when the two forces are equal:

where the term on the left is the frictional force, while the term on the right is the centripetal force, and where
is the coefficient of static friction
m is the mass of the car
g is the acceleration of gravity
v is the speed of the car
r is the radius of the track
In this problem, we have:
r = 564 m
v = 35 m/s

And re-arranging the equation for
, we can find the coefficient of static friction:

Learn more about friction:
brainly.com/question/6217246
brainly.com/question/5884009
brainly.com/question/3017271
brainly.com/question/2235246
#LearnwithBrainly
Producing plastics benefits the economy by employing workers and helps the economy of every state by spending billions of dollars on shipping plastic products.
32 kg m/s would be the kinetic energy.
Kinetic Energy = (1/2) (mass) (speed)
First runner: KE = (1/2) (45kg) (49 m/s) = 1,102.5 Joules
Second runner: KE = (1/2) (93kg) (9 m/s) = 418.5 Joules
The <em>first runner </em><em>has 163</em>% more kinetic energy than the second runner has.