Answer:
The average acceleration during the 6.0 s interval was -27 m/s².
Explanation:
Hi there!
The average acceleration is defined as the change in velocity over time:
a = Δv/t
Where:
a = acceleration.
Δv = change in velocity = final velocity - initial velocity
t = elapsed time
The change in velocity will be:
Δv = final velocity - initial velocity
Δv = -74 m/s - 87 m/s = -161 m/s
(notice the negative sign of the velocity that is in opposite direction to the direction considered positive)
Then the average acceleration will be:
a = Δv/t
a = -161 m/s / 6.0 s
a = -27 m/s²
The average acceleration during the 6.0 s interval was -27 m/s².
Answer: Δθ = 127.4 K
Explanation: by using the law of conservation of energy, the kinetic energy of the bullet equals the heat energy on the plate.
Kinetic energy of bullet = mv²/2
Heat energy = mcΔθ
Where m = mass of bullet = 0.09kg, v = velocity of bullet = 182 m/s, c = specific heat capacity of lead bullet = 130 j/kgk
Δθ = change in temperature
mv²/2 = mcΔθ
With 'm' on both sides of the equation, they cancel out each other, hence we have that
v²/2 = cΔθ
v² = 2cΔθ
Δθ= v²/2c
Δθ = (182)²/2×130
Δθ = 33124/260
Δθ = 127.4 K
Answer:
a) 5200 N b) 8800 N
Explanation:
a) tension in the cable when it was being lowered to the sea floor = weight of the object which acts downward ( equals the tension in the cable when the craft was stationary in opposite direction) - the drag force which will act upward = 7000 - 1800 = 5200 N
b) tension in the cable when the craft was being raised since the tension will act upward and the drag force and the weight will act downward = 7000 + 1800 = 8800 N