Deci, Centi, then Nano is the correct order from largest to smallest
Answer:
Power will be 0.2023 watt
And when amplitude is halved then power will be 0.0505 watt
Explanation:
We have given mass of the Piano wire m = 2.60 gram = 0.0026 kg
Length of wire l = 84 cm = 0.84 m
So mass density 
Tension in the wire T = 25 N
Frequency f = 120 Hz
So angular frequency 
And amplitude A = 1.6 mm = 0.0016 m
We have to find the generated power
Power is given by 
From the relation we can see that power 
So if amplitude is halved then power will be
times
So power will be equal to 
Electromagnetic waves do not require a medium to travel through. They can travel through empty space or matter.
3. In a uniform electric field, the equation for the magnitude of the magnetic field is E=(V/d). V= voltage d= distance. If the magnetic field magnitude is
constant , as stated in your problem, then the voltage must stay the same otherwise the value of "E" would change". And the problem already told us the "E" is uniform and so, not changing. Does that make sense?
4a. If the magnetic field lines are equally spaced apart, in other words share the same
density. Then we know that the magnitude of the magnetic field is unchanging. This is because the density of of the magnetic field lines(how many are in a certain area) is related to the magnitude being expressed by the electric field. Greater magnitude is expressed by the presence of more lines (higher line density)
4b. The electric potential is measured in Volts(V) and is uniform along the same equipotential line. What is an equipotential line(gray)? It is a line drawn perpendicular(forms a right angle with) to the magnetic field lines(black) to show the changes in electric potential. One space where electric potential will always be the same because it will always be equal to 0 Volts is exactly in between a positive and negative charges of equal charge value I have pointed to this line with a purple arrow in my picture.
I really hope this makes sense to you and that my pictures help! :)