Answer:
The kinetic energy of the mass at the instant it passes back through the equilibrium position is 0.06500 J.
Explanation:
Given that,
Mass = 2.15 kg
Distance = 0.0895 m
Amplitude = 0.0235 m
We need to calculate the spring constant
Using newton's second law

Where, f = restoring force


Put the value into the formula


We need to calculate the kinetic energy of the mass
Using formula of kinetic energy

Here, 

Here, 


Put the value into the formula


Hence, The kinetic energy of the mass at the instant it passes back through the equilibrium position is 0.06500 J.
The frequency of the wave is 50 Hz
Explanation:
The frequency of the wave is defined as the number of cycles per second of the wave:

where
N is the number of cycles completed in a time t.
Frequency is measured in Hertz (Hz).
In this problems, the wave has
N = 100 pulses
in
t = 2.0 s
Therefore, its frequency is

Learn more about waves and frequency here:
brainly.com/question/5354733
brainly.com/question/9077368
#LearnwithBrainly
a. 4.52 m/s south
Velocity is a vector, whose magnitude is defined as the ratio between the displacement of the object and the time taken for the displacement to occur:

where
d is the displacement
t is the time
Velocity is a vector, so it also has a direction, which corresponds to that of the displacement.
For the ball in this problem,
d = 9.5 m south
t = 2.1 s
Substituting, we find:

and the directiion is the same as the displacement (south).
b. 4.52 m/s north
For this part, we must keep in mind that the speed is the magnitude of the velocity; however, speed is a scalar, so it does not have a direction.
Here we are told that the tennis ball travels at constant speed, so on its way back from Liam to Katie the ball's velocity is still the same as before, therefore

However, this time the direction is opposite to before, since the ball is travelling in the opposite direction.
Therefore, the ball's velocity when Liam returns Katie's service is
4.52 m/s north