Sound waves....................................
Answer:
Vertical distance= 3.3803ft
Explanation:
First with the speed of the ball and the distance traveled horizontally we can determine the flight time to reach the plate:
Velocity= (90 mi/h) × (1 mile/5280ft) = 475200ft/h
Distance= Velocity × time⇒ time= 60.5ft / (475200ft/h) = 0.00012731h
time= 0.00012731h × (3600s/h)= 0.458316s
With this time we can determine the distance traveled vertically taking into account that its initial vertical velocity is zero and its acceleration is that of gravity, 9.81m/s²:
Vertical distance= (1/2) × 9.81 (m/s²) × (0.458316s)²=1.0303m
Vertical distance= 1.0303m × (1ft/0.3048m) = 3.3803ft
This is the vertical distance traveled by the ball from the time it is thrown by the pitcher until it reaches the plate, regardless of air resistance.
Answer: 20
Explanation: Mass number is the number of neutrons plus the number of protons. 8 + 12 gives 20.
Answer:
x=2d
Explanation:
initial stretch in the spring is d
so using Hook's law
at equilibrium position
k×d=mg
where k= spring constant
m= mass of fish
g= acceleration due to gravity.
d=mg/k ................ (1)
in second case by energy conservation
1/2 kx^2=mgx
x=2mg/k
using equation 1
x=2d
Answer:
Below
Explanation:
You can use this equation to find the distance :
distance = velocity x time
distance = (26.7)(3.06)
= 81.702 m
Rounding to 3 sig figs
= 81.7 m
Hope this helps