1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tresset_1 [31]
2 years ago
5

An automobile tire is inflated with air originally at 10.0°C and normal atmospheric pressure. During the process, the air is com

pressed to 30.0% of its original volume and the temperature is increased to 46.0°C. (a) What is the pressure in the tire (absolute)? Pa (b) After the car is driven at high speed, the tire's air temperature rises to 85.0°C and the tire's interior volume increases by 2.00%. What is the new pressure in the tire (absolute)? Pa
Physics
1 answer:
solong [7]2 years ago
8 0

Answer:

(a) 3.81\times 10^5\ Pa

(b) 4.19\times 1065\ Pa

Explanation:

<u>Given:</u>

  • T_1 = The first temperature of air inside the tire = 10^\circ C =(273+10)\ K =283\ K
  • T_2 = The second temperature of air inside the tire = 46^\circ C =(273+46)\ K= 319\ K
  • T_3 = The third temperature of air inside the tire = 85^\circ C =(273+85)\ K=358 \ K
  • V_1 = The first volume of air inside the tire
  • V_2 = The second volume of air inside the tire = 30\% V_1 = 0.3V_1
  • V_3 = The third volume of air inside the tire = 2\%V_2+V_2= 102\%V_2=1.02V_2
  • P_1 = The first pressure of air inside the tire = 1.01325\times 10^5\ Pa

<u>Assume:</u>

  • P_2 = The second pressure of air inside the tire
  • P_3 = The third pressure of air inside the tire
  • n = number of moles of air

Since the amount pof air inside the tire remains the same, this means the number of moles of air in the tire will remain constant.

Using ideal gas equation, we have

PV = nRT\\\Rightarrow \dfrac{PV}{T}=nR = constant\,\,\,(\because n,\ R\ are\ constants)

Part (a):

Using the above equation for this part of compression in the air, we have

\therefore \dfrac{P_1V_1}{T_1}=\dfrac{P_2V_2}{T_2}\\\Rightarrow P_2 = \dfrac{V_1}{V_2}\times \dfrac{T_2}{T_1}\times P_1\\\Rightarrow P_2 = \dfrac{V_1}{0.3V_1}\times \dfrac{319}{283}\times 1.01325\times 10^5\\\Rightarrow P_2 =3.81\times 10^5\ Pa

Hence, the pressure in the tire after the compression is 3.81\times 10^5\ Pa.

Part (b):

Again using the equation for this part for the air, we have

\therefore \dfrac{P_2V_2}{T_2}=\dfrac{P_3V_3}{T_3}\\\Rightarrow P_3 = \dfrac{V_2}{V_3}\times \dfrac{T_3}{T_2}\times P_2\\\Rightarrow P_3 = \dfrac{V_2}{1.02V_2}\times \dfrac{358}{319}\times 3.81\times 10^5\\\Rightarrow P_3 =4.19\times 10^5\ Pa

Hence, the pressure in the tire after the car i driven at high speed is 4.19\times 10^5\ Pa.

You might be interested in
If a force of 40N is applied for 0.2 sec to change the momentum of a volleyball, what is the impulse?
Montano1993 [528]

Answer:

8ns

Explanation:

40(0.2)

=8ns

7 0
2 years ago
How is the energy carried per photon of light related to the wavelength of the light?
AveGali [126]

The energy carried per photon of light is inversely proportional to the wavelength of the light

The "quantum of electromagnetic radiation" is called a photon. It is, thus, the tiniest and most basic particle of electromagnetic radiation. A photon is a stable particle that has no mass and no electric charge. The concept of wave-particle duality holds true for this particle.

The distance between the two crests or troughs of the light wave is known as the wavelength of light. It is represented by the greek letter lambda 'λ'

A quantity is inversely proportional if it decreases when the related quantity is increased or vice versa. For example, frequency is inversely proportional to wavelength

To know more about photons, refer to here

brainly.com/question/20912241

#SPJ4

3 0
1 year ago
A 50 kg pitcher throws a baseball with a mass of 0.15 kg. If the ball is thrown with a positive velocity of 35 m/s and there is
Andreas93 [3]

The velocity of the pitcher is <u>0.105 m/s</u> in a direction opposite to the velocity of the ball.

When no external force acts on a system, the total momentum of the system is conserved. The total initial momentum of the system is equal to the total final momentum of the system.

The pitcher and the ball are initially at rest, therefore, the total initial momentum of the system is zero.

Since no external forces act on the system comprising of pitcher and the ball, the total final momentum of the system is also equal to zero.

If the mass of the pitcher is mp and its speed is vp, the mass of the ball is mb and the ball's speed is vb, then the final momentum of the system of pitcher and the ball is given by,

p=m_pv_p+m_bv_b=0

Therefore,

v_p=-\frac{m_b}{m_p} v_p

Substituet 0.15 kg for mb, 50 kg for mp and 35 m/s for vb.

v_p=-\frac{m_b}{m_p} v_p=-\frac{0.15 kg}{50 kg} (35m/s)=-0.105 m/s

The pitcher has a velocity <u> 0.105 m/s</u> opposite to the direction of the velocity of the ball.

8 0
2 years ago
Which situation is the best example of translational motion?.
AleksAgata [21]

Answer:

 a block sliding down a ramp,a leaf blowing across a field

8 0
2 years ago
A 1,000 kg ball traveling at 5 m/s would have
jonny [76]

Answer:

15 because 5×5×5 is the same thing as 5×3 which equals to 15

6 0
3 years ago
Read 2 more answers
Other questions:
  • A foot is 12 inches and a mile is 5280 ft, exactly. A centimeter is exactly 0.01m or mm. Sammy is 5 feet and 5.3 inches tall. Wh
    7·1 answer
  • Electromagnets are created by
    10·2 answers
  • What characteristics of a planet determine the strength of its gravitational force on other objects? A. diameter of the planet a
    12·1 answer
  • Radiation is an example of a transverse wave t or f
    15·1 answer
  • When the burner setting is changed to low the burner continues to produce heat?
    13·1 answer
  • How much horsepower does a camaro ss have?
    8·2 answers
  • Please help asap!99 points
    14·2 answers
  • A 1,500 kg truck is towed sideways out of a mud-hole with a force of 15,000 N. How much acceleration is required for the tow tru
    8·1 answer
  • Train A is moving at 100 kmh–1 through a station. Train B is also travelling at 100 kmh–1 through the station but in the opposit
    9·1 answer
  • 6. Find the magnetic field strength at the centre of a solenoid with
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!