<h2>Question:</h2>
In this circuit the resistance R1 is 3Ω, R2 is 7Ω, and R3 is 7Ω. If this combination of resistors were to be replaced by a single resistor with an equivalent resistance, what should that resistance be?
Answer:
9.1Ω
Explanation:
The circuit diagram has been attached to this response.
(i) From the diagram, resistors R1 and R2 are connected in parallel to each other. The reciprocal of their equivalent resistance, say Rₓ, is the sum of the reciprocals of the resistances of each of them. i.e

=>
------------(i)
From the question;
R1 = 3Ω,
R2 = 7Ω
Substitute these values into equation (i) as follows;


Ω
(ii) Now, since we have found the equivalent resistance (Rₓ) of R1 and R2, this resistance (Rₓ) is in series with the third resistor. i.e Rₓ and R3 are connected in series. This is shown in the second image attached to this response.
Because these resistors are connected in series, they can be replaced by a single resistor with an equivalent resistance R. Where R is the sum of the resistances of the two resistors: Rₓ and R3. i.e
R = Rₓ + R3
Rₓ = 2.1Ω
R3 = 7Ω
=> R = 2.1Ω + 7Ω = 9.1Ω
Therefore, the combination of the resistors R1, R2 and R3 can be replaced with a single resistor with an equivalent resistance of 9.1Ω
The forces of attraction between water molecules and the glass walls and within the molecules of water themselves are what enable the water to rise in a thin tube immersed in water.
<h3>What is force?</h3>
Force is defined as the push or pulls applied to the body. Sometimes it is used to change the shape, size, and direction of the body.
Force is defined as the product of mass and acceleration. Its unit is Newton.
Surface or interfacial forces lead to capillarity. The forces of attraction between the water molecules and the glass walls and among the water molecules themselves are what causes the water in a thin tube submerged in water to rise.
Hence, the water rises up a thin capillary tube can be explained by Newton's third law.
To learn more about the force refer to the link;
brainly.com/question/26115859#SPJ1
#SPJ1
1. When an object is moving away from us, the light from the object is known as redshift, and when an object is moving towards us, the light from the object is known as blueshift.
2. A wavelength increases in size, and its frequency, and energy decrease.
3. The frequency of a wave increases, and its wavelength decreases.
Redshift is an important term for astronomers. The term can be taken literally. The wavelengths of light are stretched and perceived as shifting toward the red portion of the spectrum. The same thing happens to sound waves when the source moves relative to the observer.
As the wave frequency decreases, the wavelength increases as long as the wave velocity remains constant. If the wave speed stays the same as the frequency decreases, it means that fewer wave peaks or troughs pass through a given point in a given time period. The number of complete wavelengths in a given unit of time is called frequency. Frequency and energy decrease with increasing wavelength.
Learn more about A wavelength here:-brainly.com/question/24452579
#SPJ1
Answer: buzzer.
The working principle of a buzzer is the conversion of electrical energy to sound energy.
The switch just cuts or permits the flow of current, the motor convertes electrical or other kind of energy into mechanical energy, a bulb converts electrical energy into light and a battery converts chemical energy into electrical energy.
Answer:
Cosmic ray's frame of reference: 99,875 years
Stationary frame of reference: 501,891 years
Explanation:
First of all, we convert the distance from parsec into metres:

The speed of the cosmic ray is

where
is the speed of light. Substituting,

And so, the time taken to complete the journey in the cosmic's ray frame of reference (called proper time) is:

Converting into years,

Instead, the time elapsed in the stationary frame of reference is given by Lorentz transformation:

And substituting v = 0.98c, we find:
