D. Free fall
Explanation:
An object is said to be in free fall when there is only one force acting on the body, which is the force of gravity.
Near the Earth's surface, the force of gravity acting on a body is given by
F = mg
where
m is the mass of the body
g is the acceleration of gravity (its value is
)
The direction of this force is downward (towards the Earth's centre).
If we apply Newton's second law on an object in free-fall, we can find its acceleration. In fact, we have:

And substituting F,

So, every object in free-fall accelerates at
towards the ground.
Learn more about free fall here:
brainly.com/question/1748290
brainly.com/question/11042118
brainly.com/question/2455974
brainly.com/question/2607086
#LearnwithBrainly
Answer:
4.0 m/s
Explanation:
The motion of the diver is the motion of a projectile: so we need to find the horizontal and the vertical component of the initial velocity.
Let's consider the horizontal motion first. This motion occurs with constant speed, so the distance covered in a time t is

where here we have
d = 3.0 m is the horizontal distance covered
vx is the horizontal velocity
t = 1.3 s is the duration of the fall
Solving for vx,

Now let's consider the vertical motion: this is an accelerated motion with constant acceleration g=9.8 m/s^2 towards the ground. The vertical position at time t is given by

where
h = 4.0 m is the initial height
vy is the initial vertical velocity
We know that at t = 1.3 s, the vertical position is zero: y = 0. Substituting these numbers, we can find vy

So now we can find the magnitude of the initial velocity:

<span>A. social issues!
Hope this assists you!</span>
1. 2+0.5+2.5= 3. 2km/hr average
2. 14-6=4seconds. 8m/s in 4s = 2m/s acceleration
3. 15m/s divided by 2.5 = 6m/s acceleration
The elastic potential energy of the spring is 0.31 J
Explanation:
The elastic potential energy of a spring is given by

where
k is the spring constant
x is the compression/stretching of the spring
For the spring in this problem, we have:
k = 500 N/m (spring constant)
x = 0.035 m (compression)
Substituting, we find the elastic potential energy:

Learn more about potential energy:
brainly.com/question/1198647
brainly.com/question/10770261
#LearnwithBrainly