Answer:
4.384 * 10^13
Explanation:
Given the expression :
[(6.67 * 10^-11) * (1.99 * 10^30)] ÷ [(1.74*10^3)*(1.74*10^3)]
Applying the laws of indices
[(6.67 * 1.99) *10^(-11 + 30)] ÷ [(1.74 * 1.74) * 10^3+3]
13.2733 * 10^19 ÷ 3.0276 * 10^6
(13.2733 / 3.0276) * 10^(19 - 6)
4.3840996 * 10^13
= 4.384 * 10^13
Answer:
The length of the tube is 3.92 m.
Explanation:
Given that,
Electric potential = 100 MV
Length = 4 m
Energy = 100 MeV
We need to calculate the value of 
Using formula of relativistic energy

Put the value into the formula


Here, 



We need to calculate the length
Using formula of length

Put the value into the formula


Hence, The length of the tube is 3.92 m.
Answer:
c = 1 / √(ε₀*μ₀)
Explanation:
The speed of the electromagnetic wave in free space is given in terms of the permeability and the permittivity of free space by
c = 1 / √(ε₀*μ₀)
where the permeability of free space (μ₀) is a physical constant used often in electromagnetism and ε₀ is the permittivity of free space (a physical constant).
Answer:
Check the diagram from the photo
Explanation:
Answer:
Coefficient of friction between the book and floor is 0.582.
Explanation:
Using the velocity formula;
v^2 = 2as
a = v^2/(2s)
a = 1.6^2/(2*0.9)
a = 2.56/1.8
a = 1.42 m/s^2
the force necessary to give the book the acceleration is
F = ma = 3.5*1.42 (m is mass of the book i.e. 3.5 kg)
F = 4.98 N
The difference in the force is the friction force, which is
Ff = 25 - 4.98 = 20 N
Ff = mgμ
where μ is coefficient of friction and g is acceleration due to gravity that is 9.8 m/s^2
μ = Ff/mg
μ = 20/(3.5*9.81)
μ = 0.582
Coefficient of friction between the book and floor is 0.582.