<h2>The acceleration of car is 0.2 ms⁻²</h2>
Explanation:
When the car moves , the distance covered is calculated by the relation
S = u t +
a t²
In this question u = 0 , because car was at rest initially
Thus S =
a t²
here S is displacement and a is the acceleration of car
Therefore 360 =
a ( 60 )²
Because time taken is one minute or 60 seconds
Therefore a = 
or a = 0.2 m s⁻²
Answer:
1.36 x 10^-3 cm
Explanation:
Area = 50 ft^2 = 46451.5 cm^2
mass = 6 oz = 170.097 g
density = 2.70 g/cm^3
Let t be the thickness of foil in cm.
mass = volume x density
mass = area x thickness x density
170.097 = 46451.5 x t x 2.70
t = 1.36 x 10^-3 cm
Thus, the thickness of aluminium foil is 1.36 x 10^-3 cm.
Answer:
Explanation:
When a body is held against a vertical wall , to keep them in balanced position , normal force is applied on their surface . this force creates normal reaction which acts against the normal force and it is equal to the normal force as per newton's third law . Ultimately friction force is created which is proportional to normal force and it acts in vertically upward direction . It prevents the body from falling down .
Hence normal force = reaction force .
From second law also net force is zero , so if normal force is N and reaction force is R
R - N = mass x acceleration = mass x 0 = 0
R = N .
Ranking normal force from highest to smallest
150 N , 130 N , 120 N
B )
Frictional force is equal to the weight of the body because the body is held at rest .
Ranking of frictional force form largest to smallest
7 kg , 5 kg , 3 kg , 1 kg .
Here frictional force is irrespective of the normal force acting on the body because frictional force adjusts itself so that it becomes equal to weight in all cases here because it always balances the weight of the body .
Answer:0.061
Explanation:
Given

Temperature of soup 
heat capacity of soup 
Here Temperature of soup is constantly decreasing
suppose T is the temperature of soup at any instant
efficiency is given by



integrating From
to 


![W=c_v\left [ T-T_C\ln T\right ]_{T_H}^{T_C}](https://tex.z-dn.net/?f=W%3Dc_v%5Cleft%20%5B%20T-T_C%5Cln%20T%5Cright%20%5D_%7BT_H%7D%5E%7BT_C%7D)
![W=c_v\left [ \left ( T_C-T_H\right )-T_C\left ( \ln \frac{T_C}{T_H}\right )\right ]](https://tex.z-dn.net/?f=W%3Dc_v%5Cleft%20%5B%20%5Cleft%20%28%20T_C-T_H%5Cright%20%29-T_C%5Cleft%20%28%20%5Cln%20%5Cfrac%7BT_C%7D%7BT_H%7D%5Cright%20%29%5Cright%20%5D)
Now heat lost by soup is given by

Fraction of the total heat that is lost by the soup can be turned is given by

![=\frac{c_v\left [ \left ( T_C-T_H\right )-T_C\left ( \ln \frac{T_C}{T_H}\right )\right ]}{c_v(T_C-T_H)}](https://tex.z-dn.net/?f=%3D%5Cfrac%7Bc_v%5Cleft%20%5B%20%5Cleft%20%28%20T_C-T_H%5Cright%20%29-T_C%5Cleft%20%28%20%5Cln%20%5Cfrac%7BT_C%7D%7BT_H%7D%5Cright%20%29%5Cright%20%5D%7D%7Bc_v%28T_C-T_H%29%7D)




Answer:
refractive index for water,glass,diamond are 0.752m, 0.667m, 0.413m respectively
Explanation:
refractive index (n) = 
velocity =
The time for travel is kept constant for all mediums.
refractive index (n) = 
distance in medium = 

For water, n= 1.33


For glass, n=1.5


For diamond, n= 2.42

