Answer:
S₁₂
Explanation:
The freezing point depression (ΔTf) is a colligative property that can be calculated using the following expression.
ΔTf = Kf × m
where,
Kf: freezing point depression
m: molality
ΔTf = Kf × m
m = ΔTf / Kf
m = 0.156 °C / (29.8 °C/m)
m = 5.23 × 10⁻³ m
The molality is:
m = moles of solute / kilograms of solvent
moles of solute = m × kilograms of solvent
moles of solute = 5.23 × 10⁻³ mol/kg × 0.5000 kg
moles of solute = 2.62 × 10⁻³ mol
1.00 g corresponds to 2.62 × 10⁻³ moles. The molar mass of Sₙ is:
1.00 g/2.62 × 10⁻³ mol = 382 g/mol
We can calculate n.
n = molar mass of Sₙ / molar mass of S
n = (382 g/mol) / (32.0 g/mol)
n = 11.9 ≈ 12
The molar formula is S₁₂.
Answer:
The number of moles of potassium hydroxide, KOH required to make 4 moles of K₂SO₄ is 8 moles of KOH
Explanation:
2KOH + H₂SO₄ → K₂SO₄ + 2H₂O
From the above reaction, we have 2 moles of KOH combining with 1 mole of H₂SO₄ to produce 1 mole of K₂SO₄ and 2 moles of H₂O.
Therefore the number of moles of potassium hydroxide that will be needed to make 4 moles of K₂SO₄ is;
8KOH + 4H₂SO₄ → 4K₂SO₄ + 8H₂O
8 moles of KOH is required to make 4 moles of K₂SO₄.
Using the rule Q=mcdeltaT
Q=0.3850j/g*22.8*875
Q=7505.19 J
is the orbital hybridization of a central atom that has one lone pair and bonds to three other atoms.
<h3>What is
orbital hybridization?</h3>
In the context of valence bond theory, orbital hybridization (or hybridisation) refers to the idea of combining atomic orbitals to create new hybrid orbitals (with energies, forms, etc., distinct from the component atomic orbitals) suited for the pairing of electrons to form chemical bonds.
For instance, the valence-shell s orbital joins with three valence-shell p orbitals to generate four equivalent sp3 mixes that are arranged in a tetrahedral configuration around the carbon atom to connect to four distinct atoms.
Hybrid orbitals are symmetrically arranged in space and are helpful in the explanation of molecular geometry and atomic bonding characteristics. Usually, atomic orbitals with similar energies are combined to form hybrid orbitals.
Learn more about Hybridization
brainly.com/question/22765530
#SPJ4