<span>Your equation for the height of the stone at any time is h(t) = -16t2<span> + 128t + 32 .
From your equation, we can tell that you're defining the upward direction as
positive. We can also tell that you threw the stone upward, with an initial speed
as it left your hand of 128 feet per second, about 87 miles per hour ... a mighty toss indeed, and I think there's a man from the Chicago Cubs waiting outside
who'd like to talk to you.
Anyway, When the stone splashes into the water, h(t) = 0 .
</span></span>
<span>-16t²<span> + 128t + 32 = 0</span></span>
Divide each side by -16 :
t² - 8t - 2 = 0
I don't see any easy way to factor the expression on the left,
so I have to use the quadratic formula to solve this equation.
t = 4 plus and minus √18 .
t = +8.24 seconds
t = -0.24 second
Mathematically, both numbers are valid solutions.But when you apply
the equation to a real world situation, only the positive 't' makes sense.
So <u> t = 8.24 seconds</u>.
Answer:
option (B) decreases
Explanation:
According to the Wein's displacement law, the minimum wavelength of the radiated emission is inversely proportional to the absolute temperature of the body which emits radiation.

Where, T is the absolute temperature of the body and λm is the minimum wavelength of heat radiated.
Here, as the temperature increases, the wavelength decreases.
Keplers laws states that planets sweep areas in equal times is second
Most of the energy will be absorbed by the materials that make up the cars, causing them to deform. The energy will also be converted into sound energy, causing a loud bang upon collision. Also, some energy will be converted to thermal energy, which will cause the cars to heat up slightly.
Answer:
A = 2.36m/s
B = 3.71m/s²
C = 29.61m/s2
Explanation:
First, we convert the diameter of the ride from ft to m
10ft = 3m
Speed of the rider is the
v = circumference of the circle divided by time of rotation
v = [2π(D/2)]/T
v = [2π(3/2)]/4
v = 3π/4
v = 2.36m/s
Radial acceleration can also be found as a = v²/r
Where v = speed of the rider
r = radius of the ride
a = 2.36²/1.5
a = 3.71m/s²
If the time of revolution is halved, then radial acceleration is
A = 4π²R/T²
A = (4 * π² * 3)/2²
A = 118.44/4
A = 29.61m/s²