Nuclear fusion and gravitational contraction
<span>constituent of star is hydrogen(including isotope) or helium. nuclear fission is almost impossible. D(deuterium; isotope of hydrogen) and T(tritium; also isotope of hydrogen) reacts and helium is formed. During this reaction, severe energy is generated. Heavier elements are formed and pulls each other. Gathered elements forms core of star. Gravity of the core prevents the gas to run away.</span>
Answer:
T would be two times the temperature That it was before the double so if the initial temperature was 20 it would now be 40
Explanation:
Decomposers is the correct answer. ( I got your back bro)
Julianne’s displacement from her origin is equal to 10.015 kilometers.
<u>Given the following data:</u>
- Distance B = 8.5 km, Northeast.
To calculate Julianne’s displacement from her origin:
<h3>How to calculate displacement.</h3>
We would denote the two (2) unit vectors along the East and Northeast directions by i and j respectively.
<u>Note:</u> Northeast is at angle of 45° with the East.
In terms of vectors, the distances becomes:
Distance A = 2i
![Distance\;B=8.5 [(cos 45i + sin 45j)]\\\\Distance\;B=(\frac{8.5}{\sqrt{2} } i \;+\;\frac{8.5}{\sqrt{2} } j)](https://tex.z-dn.net/?f=Distance%5C%3BB%3D8.5%20%5B%28cos%2045i%20%2B%20sin%2045j%29%5D%5C%5C%5C%5CDistance%5C%3BB%3D%28%5Cfrac%7B8.5%7D%7B%5Csqrt%7B2%7D%20%7D%20i%20%5C%3B%2B%5C%3B%5Cfrac%7B8.5%7D%7B%5Csqrt%7B2%7D%20%7D%20j%29)
<u>For the </u><u>resultant displacement</u><u>:</u>

D = 10.015 kilometers.
Read more on displacement here: brainly.com/question/13416288
Answer:
How to Test Hypotheses
State the hypotheses. Every hypothesis test requires the analyst to state a null hypothesis and an alternative hypothesis. ...
Formulate an analysis plan. The analysis plan describes how to use sample data to accept or reject the null hypothesis. ...
Analyze sample data. ...
Interpret the results.