No in that case it would be a chemical change
Answer:
Multiply the element's atomic mass by the number of atoms of that element in the compound. This will give you the relative amount that each element contributes to the compound. For hydrogen chloride, HCl, the molar mass of each element is 1.007 grams per mole for hydrogen and 35.453 grams per mole for chlorine.
When ammonia is reacted with HCl it abstracts proton from acid and forms Ammonium Ion and Chloride Ion.
NH₃ + HCl → ⁺NH₄ + Cl⁻ (simply Written NH₄Cl)
Structure,
The structure of Ammonium Chloride is among those structures which contains all three types of bonding's, i.e.
Ionic Bond
Covalent Bond
Coordinate Covalent Bond
Three Hydrogen atoms previously bonded with Nitrogen are covalent in nature. The new incoming proton from HCl forms co-ordinate covalent bond with Nitrogen and Chloride Ion containing negative charge make Ionic Bond with the positive Ammonium Ion. In question, if the line between Nitrogen and Chlorine atom is assumed covalent then it is incorrect. Structure is shown below,
The half life of a radioactive element is the time needed to the element to decay and reach the half amount of the initial amount. Here we have a radioisotope element which decays its half from 10,000 to 5,000 in two days. Therefore, its half life is 2 days.
Answer: The value of
for chloroform is
when 0.793 moles of solute in 0.758 kg changes the boiling point by 3.80 °C.
Explanation:
Given: Moles of solute = 0.793 mol
Mass of solvent = 0.758

As molality is the number of moles of solute present in kg of solvent. Hence, molality of given solution is calculated as follows.

Now, the values of
is calculated as follows.

where,
i = Van't Hoff factor = 1 (for chloroform)
m = molality
= molal boiling point elevation constant
Substitute the values into above formula as follows.

Thus, we can conclude that the value of
for chloroform is
when 0.793 moles of solute in 0.758 kg changes the boiling point by 3.80 °C.