Answer:
.018 M
Explanation:
grams/MM=ans./volume(L) = M
4/58.45=ans./3.8=.018 M
A is correct because there is no reaction involved
Answer is: reducin agent in this reaction is thiosulfate (S₂O₃²⁻).
Balanced chemical reaction: 2S₂O₃²⁻(aq) + I₂(aq) → S₄O₆²⁻(aq) + 2I⁻<span>(aq).
Reducing agent is element or compound who loose electrons in chemical reaction. Sulfur in </span>thiosulfate change oxidation number from +2 to +5 tetrathionate anion (two<span> sulfur </span>atoms in the ion have oxidation state<span> 0 and two atoms have oxidation state +5).</span>
Answer:
See explanation
Explanation:
In the Rutherford experiment, alpha particles were directed at the same spot on a thin gold foil.
As the alpha particles hit the foil, most of the alpha particles went through the foil. In Rutherford's interpretation, most of the particles went through because the atom consisted largely of empty space.
However, some of the alpha particles were deflected through large angles, in Rutherford's interpretation, the deflected alpha particles had hit the dense positive core of the atom which he called the nucleus.
This accounted for their scattering through large angles throughout the foil in all directions.
Answer:
The granite block transferred <u>4080 joules</u> of energy, and the mass of the water is <u>35.84 grams</u>.
Explanation:
The equation needed to answer both parts of the question is:
Q = mcΔT
In this equation,
-----> Q = energy/heat (J)
-----> m = mass (g)
-----> c = specific heat (J/g°C)
-----> ΔT = change in temperature (°C)
<u>Part #1:</u>
First, you need to find the energy transferred from granite block using the previous equation. You have been given the mass, specific heat, and change in temperature.
Q = ? J c = 0.795 J/g°C
m = 126.1 g ΔT = 92.6 °C - 51.9 °C = 40.7 °C
Q = mcΔT
Q = (126.1 g)(0.795 J/g°C)(40.7 )
Q = 4080
<u>Part #2:</u>
Secondly, using the energy calculated in Part #1, you need to calculate the mass of the water. You have calculated the energy transferred, and have been given the specific heat and change in temperature.
Q = 4080 J c = 4.186 J/g°C
m = ? g ΔT = 51.9 °C - 24.7 °C = 27.2 °C
Q = mcΔT
4080 J = m(4.186 J/g°C)(27.2 °C)
4080 J = m(113.8592)
35.84 = m