Answer:
option (c) is the correct answer which is zero acceleration.
Explanation:
It is given in the question that the velocity is constant.
Now,
the options are provided in relation to the acceleration.
We know,
acceleration is rate of change of velocity per unit time i.e
acceleration =
since, the change in velocity is given to be zero,
thus, dV/dt = 0
hence,
acceleration = 0
therefore, option (c) is the correct answer which is zero acceleration.
Answer:
a) -8 lb / ft^3
b) -70.4 lb / ft^3
c) 54.4 lb / ft^3
Explanation:
Given:
- Diameter of pipe D = 12 in
- Shear stress t = 2.0 lb/ft^2
- y = 62.4 lb / ft^3
Find pressure gradient dP / dx when:
a) x is in horizontal flow direction
b) Vertical flow up
c) vertical flow down
Solution:
- dP / dx as function of shear stress and radial distance r:
(dP - y*L*sin(Q))/ L = 2*t / r
dP / L - y*sin(Q) = 2*t / r
Where dP / L = - dP/dx,
dP / dx = -2*t / r - y*sin(Q)
Where r = D /2 ,
dP / dx = -4*t / D - y*sin(Q)
a) Horizontal Pipe Q = 0
Hence, dP / dx = -4*2 / 1 - 62.4*sin(0)
dP / dx = -8 + 0
dP/dx = -8 lb / ft^3
b) Vertical pipe flow up Q = pi/2
Hence, dP / dx = -4*2 / 1 - 62.4*sin(pi/2)
dP / dx = 8 - 62.4
dP/dx = -70.4 lb / ft^3
c) Vertical flow down Q = -pi/2
Hence, dP / dx = -4*2 / 1 - 62.4*sin(-pi/2)
dP / dx = -8 + 62.4
dP/dx = 54.4 lb / ft^3
Answer:
The surface temperature of the ground is = 296.946K
Explanation:
Solution
Given
r₁= 0.05m
r₂= 0.08m
Tn =Ti = 77K
Ki = 0.0035 Wm-1K-1
Kg = 1 Wm-1K-1
Z= 2m
Now,
The outer type temperature (Skin temperature pipe)
Q = T₀ -T₁/ln (r2/r1)/2πKi = 2πKi T0 -T1/ln (r2/r1)
Thus,
10 w/m = 2π * 0.0035 = T0 -77/ln 0.08/0.05
⇒ T₀ -77 = 231.72
T₀= 290.72K
The shape factor between the cylinder and he ground
S = 2πL/ln 4z/D
where L = length of pipe
D = outer layer of pipe
S = 2π * 1/4 *2/ 2 * 0.08 = 1.606m
The heat gained in the pipe is = S * Kg * (Tg- T₀)
(10* 1) = 1.606 * 1* (Tg- 290.72)
Tg - 290.72 = 6.2266
Tg = 296.946K
Therefore the surface temperature to the ground is 296.946K