1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Svetach [21]
3 years ago
14

Many jacks use hydraulic power. True or False

Engineering
1 answer:
34kurt3 years ago
7 0

Answer:true

Explanation:

You might be interested in
A student is building a circuit which material should she use for the wires and why?
Nataliya [291]

Answer:

i think it is D tell me if its wrong

Explanation:

6 0
3 years ago
Read 2 more answers
1. A pipeline constructed of carbon steel failed after 3 years of operation. On examination it was found that the wall thickness
jek_recluse [69]

Answer:

check the explanation

Explanation:

1.

Thickness Loss = t =\frac{t_{o}-t_{i}}{2} = \frac{114.3-102.3}{2} = 2mm

t_{f} = \frac{1}{2}*6 = 3mm

Hence Rate of Corrosion = 6*\frac{1-0.5}{3} = 1mm/year = 0.03 inches per year

2.

As the expected future life is 7 years,

40 carbon steel pipe has to be replaced every 3 years as given in the question,

Cost per unit length is the sum of material cost and installation cost.

Cost of 40 carbon steel = (5 dollars + 16.5 dollars) * 3 = 64.5 dollars

For 80 carbon steel pipe, first calculate the thickness loss,

\frac{114.3-97.2}{2} = 8.55mm

The critical thickness is given to be 3mm, Hence change in thickness is 8.55-3 = 5.5mm

This 80 carbon steel pipe has to be replaced one more time

Hence, Cost per unit length is the sum of material cost and installation cost.

Cost of 80 carbon steel = (8.3 dollars + 16.5 dollars) * 2 = 49.6 dollars

The best is of stainless steel which does not undergo corrosion at all and thus it needs to be replaced only once throughout the plant operation. Its cost = 24.8 dollars + 16.5 dollars = 41.3 dollars

Hence, stainless steel is the recommended pipe to be used.

3 0
3 years ago
A closed system consisting of 4 lb of a gas undergoes a process during which the relation between pressure and volume is pVn 5 c
gayaneshka [121]

Answer:

V1=5<u>ft3</u>

<u>V2=2ft3</u>

n=1.377

Explanation:

PART A:

the volume of each state is obtained by multiplying the mass by the specific volume in each state

V=volume

v=especific volume

m=mass

V=mv

state 1

V1=m.v1

V1=4lb*1.25ft3/lb=5<u>ft3</u>

state 2

V2=m.v2

V2=4lb*0.5ft3/lb=  <u> 2ft3</u>

PART B:

since the PV ^ n is constant we can equal the equations of state 1 and state 2

P1V1^n=P2V2^n

P1/P2=(V2/V1)^n

ln(P1/P2)=n . ln (V2/V1)

n=ln(P1/P2)/ ln (V2/V1)

n=ln(15/53)/ ln (2/5)

n=1.377

3 0
4 years ago
Windmills slow the air and cause it to fill a larger channel as it passes through the blades. Consider a circular windmill with
Scilla [17]

Answer:

DIAMETER  = 9.797 m

POWER = \dot W = 28.6 kW

Explanation:

Given data:

circular windmill diamter D1 = 8m

v1 = 12 m/s

wind speed = 8 m/s

we know that specific volume is given as

v =\frac{RT}{P}

  where v is specific volume of air

considering air pressure is 100 kPa and temperature 20 degree celcius

v =  \frac{0.287\times 293}{100}

v = 0.8409 m^3/ kg

from continuity equation

A_1 V_1 = A_2 V_2

\frac{\pi}{4}D_1^2 V_1 = \frac{\pi}{4}D_1^2 V_2

D_2 = D_1 \sqrt{\frac{V_1}{V_2}}

D_2 = 8 \times \sqrt{\frac{12}{8}}

D_2 = 9.797 m

mass flow rate is given as

\dot m = \frac{A_1 V_1}{v} = \frac{\pi 8^2\times 12}{4\times 0.8049}

\dot m = 717.309 kg/s

the power produced \dot W = \dot m \frac{ V_1^2 - V_2^2}{2} = 717.3009 [\frac{12^2 - 8^2}{2} \times \frac{1 kJ/kg}{1000 m^2/s^2}]

\dot W = 28.6 kW

8 0
3 years ago
Consider a Carnot refrigeration cycle executed in a closed system in the saturated liquid–vapor mixture region using 1.06 kg of
Alexxandr [17]

Answer:

P_m_i_n = 442KPA

Explanation:

We are given:

m = 1.06Kg

T_H = 1.2T_L

T = 22kj

Therefore we need to find coefficient performance or the cycle

COP_R = \frac {1}{(T_R/T_l) -1}

= \frac {1 }{1.2-1}

= 5

For the amount of heat absorbed:

Q_l = COP_R Wm

= 5 × 22 = 110KJ

For the amount of heat rejected:

Q_H = Q_L + W_m

= 110 + 22 = 132KJ

[tex[ q_H = \frac{Q_L}{m} [/tex];

= = \frac{132}{1.06}

= 124.5KJ

Using refrigerant table at hfg = 124.5KJ/Kg we have 69.5°c

Convert 69.5°c to K we have 342.5K

To find the minimum temperature:

T_L = \frac{T_H}{1.2};

T_L = \frac{342.5}{1.2}

= 285.4K

Convert to °C we have 12.4°C

From the refrigerant R -134a table at T_L = 12.4°c we have 442KPa

6 0
3 years ago
Other questions:
  • Air is compressed adiabatically from p1 1 bar, T1 300 K to p2 15 bar, v2 0.1227 m3 /kg. The air is then cooled at constant volum
    13·1 answer
  • The boiler pressure is 38bar and the condenser pressure 0.032 bar.The saturated steam is superheated to 420 oC before entering t
    8·1 answer
  • How does fouling affects the performance of a heat exchanger?
    6·1 answer
  • What is the magnitude of the maximum stress that exists at the tip of an internal crack having a radius of curvature of 2.5×10-4
    13·1 answer
  • You are watching the weather forecast and the weatherman says that strong thunderstorms and possible tornadoes are likely to for
    15·1 answer
  • In a semiconductor manufacturing process, three wafers from a lot are tested. Each wafer is classified as pass or fail. Assume t
    15·1 answer
  • An object is supported by a crane through a steel cable of 0.02m diameter. If the natural swinging of the equivalent pendulum is
    6·1 answer
  • Show that -40 F is approximately equal to -40 C.
    12·1 answer
  • An engine jack is used to lift a 265-lb engine 6'. How much work, in ft-lb, is performed?
    11·1 answer
  • PLEASE FIX THIS LUA SCRIPT
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!