1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bulgar [2K]
3 years ago
9

Determine the design stress for bolts in a cylinder cover where the load is fluctuating due to gas pressure. The maximum load on

the bolt is 50 kN and the minimum is 30 kN. The load is unpredictable and factor of safety is 3. The surface of the bolt is hot rolled and the surface finish factor is 0.9. During a simple tension test and rotating beam test on ductile materials (40 C 8 steel annealed), the following results were obtained : Diameter of specimen = 12.5 mm; Yield strength = 240 MPa; Ultimate strength = 450 MPa; Endurance limit = 180 MPa
​
Engineering
1 answer:
Svetach [21]3 years ago
3 0

Sorry I'm new and need points ty

You might be interested in
Air enters the compressor of a cold air-standard Brayton cycle with regeneration and reheat at 100 kPa, 300 K, with a mass flow
yanalaym [24]

Answer:

a. 47.48%

b. 35.58%

c. 2957.715 KW

Explanation:

T_2 =T_1 + \dfrac{T_{2s} - T_1}{\eta _c}

T₁ = 300 K

\dfrac{T_{2s}}{T_1} = \left( \dfrac{P_{2}}{P_1} \right)^{\dfrac{k-1}{k} }

T_{2s} = 300 \times (10) ^{\dfrac{0.4}{1.4} }

T_{2s} = 579.21 K

T₂ = 300+ (579.21 - 300)/0.8 = 649.01 K

T₃ = T₂ + \epsilon _{regen}(T₅ - T₂)

T₄ = 1400 K

Given that the pressure ratios across each turbine stage are equal, we have;

\dfrac{T_{5s}}{T_4} = \left( \dfrac{P_{5}}{P_4} \right)^{\dfrac{k-1}{k} }

T_{5s} = 1400×\left( 1/\sqrt{10}  \right)^{\dfrac{0.4}{1.4} }  = 1007.6 K

T₅ = T₄ + (T_{5s} - T₄)/\eta _t = 1400 + (1007.6- 1400)/0.8 = 909.5 K

T₃ = T₂ + \epsilon _{regen}(T₅ - T₂)

T₃ = 649.01 + 0.8*(909.5 - 649.01 ) = 857.402 K

T₆ = 1400 K

\dfrac{T_{7s}}{T_6} = \left( \dfrac{P_{7}}{P_6} \right)^{\dfrac{k-1}{k} }

T_{7s} = 1400×\left( 1/\sqrt{10}  \right)^{\dfrac{0.4}{1.4} }   = 1007.6 K

T₇ = T₆ + (T_{7s} - T₆)/\eta _t = 1400 + (1007.6 - 1400)/0.8 = 909.5 K

a. W_{net \ out} = cp(T₆ -T₇) = 1.005 * (1400 - 909.5) = 492.9525 KJ/kg

Heat supplied is given by the relation

cp(T₄ - T₃) + cp(T₆ - T₅) = 1.005*((1400 - 857.402) + (1400 - 909.5)) = 1038.26349 kJ/kg

Thermal efficiency of the cycle = (Net work output)/(Heat supplied)

Thermal efficiency of the cycle = (492.9525 )/(1038.26349 ) =0.4748 = 47.48%

b. bwr = \dfrac{W_{c,in}}{W_{t,out}}

bwr = (T₂ -T₁)/[(T₄ - T₅) +(T₆ -T₇)]  = (649.01 - 300)/((1400 - 909.5) + (1400 - 909.5)) = 35.58%

c. Power = 6 kg *492.9525 KJ/kg  = 2957.715 KW

3 0
4 years ago
-0-1"<br> -0<br> -20<br> -15<br> -10<br> 0<br> -5
kari74 [83]

Answer:

what

Explanation:

what is that

3 0
4 years ago
A 1000-MVA, 20-kV, 60-Hz, three-phase generator is connected through a 1000-MVA, 20-kV, Dy345-kV, Y transformer to a 345-kV circ
aniked [119]

Answer:

(a) the subtransient current through the breaker in per-unit and in kA rms =   71316.39kA

(b) the rms asymmetrical fault current the breaker interrupts, assuming maximum dc offset. = 152KA

Explanation:

check the attached files for explanation

7 0
3 years ago
14. An engine is brought into the shop with a
Lostsunrise [7]

Answer:

B. To accurately measure spark advance, use a timing light that incorporates an

ignition advance meter. The spark advance cannot be determined by listening to the way the engine sounds.

8 0
2 years ago
A slab-milling operation is performed on a 0.7 m long, 30 mm-wide cast-iron block with a feed of 0.25 mm/tooth and depth of cut
denis23 [38]

Answer:

a)  T_m=1.787min

b)  MRR=35259.7mm^3/min

Explanation:

From the question we are told that:

Cast-iron block Dimension:

Lengthl=0.7m=>700mm

Width w=30mm

FeedF=0.25mm/tooth

Depth dp=3mm

Diameter d=75mm

Number of cutting teeth n=8

Rotation speed N=200rpm

Generally the equation for Approach is mathematically given by

x=\sqrt{Dd-d^2}

X=\sqrt{75*3-3^2}

X=14.69mm

Therefore

Effective length is given as

L_e=Approach +object Length

L_e=700+14.69

L_e=714.69mm

a)

Generally the equation for Machine Time is mathematically given by

T_m=\frac{L_e}{F_m}

Where

F_m=F*n*N

F_m=0.25*8*200

F_m=400

Therefore

T_m=\frac{714.69}{400}

T_m=1.787min

b)

Generally the equation for Material Removal Rate. is mathematically given by

MRR=\frac{L*B*d}{t_m}

MRR=\frac{700*30*3}{1.787}

MRR=35259.7mm^3/min

3 0
3 years ago
Other questions:
  • A cylindrical specimen of brass that has a diameter of 20 mm, a tensile modulus of 110 GPa, and a Poisson’s ratio of 0.35 is pul
    13·1 answer
  • What is a construction worker with limited skills called?
    12·1 answer
  • A disk brake has two pads which cover 45 degrees of the disk. The outside radius is 6.0 inch and the inside radius is 4.0 inch.
    5·1 answer
  • What must engineers keep in mind so that their solutions will be appropriate? O abstract knowledge O context O scientists persev
    12·1 answer
  • Consider the following incomplete code segment, which is intended to print the sum of the digits in num. For example, when num i
    8·1 answer
  • A device that helps increase field worker productivity by providing reliable location and time
    13·1 answer
  • What is the key to being a good engineer?
    15·2 answers
  • A positive slope on a position-time graph suggests
    15·1 answer
  • Consider the function f(n) = n
    14·1 answer
  • The phase angle in a circuit is 45 degrees what's the power factor of this circuit?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!