1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elanso [62]
3 years ago
9

A commuter train traveling at 50 mi/h is 3 mi from a station. The train then decelerates so that its speed is 15 mi/h when it is

0.5 mi from the station. Knowing that the train arrives at the station 7.5 min after beginning to decelerate and assuming constant decelerations, determine (a) the time required for the train to travel the first 2.5 mi, (b) the speed of the train as it arrives at the station, (c) the final constant deceleration of the train.
Engineering
1 answer:
jonny [76]3 years ago
7 0

Answer:

a) t = 277.477\,s\,(4.625\min), b) v_{f} = 0\,\frac{mi}{h}, c) a = -0.128\,\frac{ft}{s^{2}}

Explanation:

a) The deceleration experimented by the commuter train in the first 2.5 miles is:

a=\frac{[(15\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,mi} )\cdot (\frac{1\,h}{3600\,s} )]^{2}-[(50\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,mi} )\cdot (\frac{1\,h}{3600\,s} )]^{2}}{2\cdot (2.5\,mi)\cdot (\frac{5280\,ft}{1\,mi} )}

a = -0.185\,\frac{ft}{s^{2}}

The time required to travel is:

t = \frac{(15\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,fi} )\cdot(\frac{1\,h}{3600\,s} )-(50\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,fi} )\cdot(\frac{1\,h}{3600\,s} )}{-0.185\,\frac{ft}{s^{2}} }

t = 277.477\,s\,(4.625\min)

b) The commuter train must stop when it reaches the station to receive passengers. Hence, speed of train must be v_{f} = 0\,\frac{mi}{h}.

c) The final constant deceleration is:

a = \frac{(0\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,mi} )\cdot(\frac{1\,h}{3600\,s} )-(15\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,mi} )\cdot(\frac{1\,h}{3600\,s} )}{(2.875\,min)\cdot (\frac{60\,s}{1\,min} )}

a = -0.128\,\frac{ft}{s^{2}}

You might be interested in
There is an electric field near the Earth's surface whose magnitude is about 145 V/m . How much energy is stored per cubic meter
weqwewe [10]

Answer:

u_e = 9.3 * 10^-8 J / m^3  ( 2 sig. fig)

Explanation:

Given:

- Electric Field strength near earth's surface E = 145 V / m

- permittivity of free space (electric constant) e_o =  8.854 *10^-12 s^4 A^2 / m^3 kg

Find:

- How much energy is stored per cubic meter in this field?

Solution:

- The solution requires the energy density stored between earth's surface and the source of electric field strength. The formula for charge density is given by:

                                        u_e = 0.5*e_o * E^2

- Plug in the values given:

                                        u_e = 0.5*8.854 *10^-12 *145^2

                                        u_e = 9.30777 * 10^-8  J/m^3

5 0
3 years ago
What are the available motor sizes for 2023 ariya ac synchronous drive motor systems in kw?.
Anika [276]

The available motor sizes for 2023 Ariya AC synchronous drive motor systems are:

40 kW.

62 kW.

160 kW.

<h3>What is a synchronous motor?</h3>

A synchronous motor refers to an alternating current (AC) electric motor in which the rotational speed of the shaft is directly proportional (equal) to the frequency of the supply current, especially at a steady state.

In Engineering, the available motor sizes for 2023 Nissan Ariya AC synchronous drive motor systems include the following:

40 kW.

62 kW.

160 kW.

Read more on synchronous motor here:

brainly.com/question/12975042

#SPJ1

5 0
2 years ago
A semicircular or circular torch movement should be used when
lesya692 [45]

Answer:

True

Explanation:

A semicircular or circular torch movement should be used when depositing weld beads.

8 0
3 years ago
The current entering the positive terminal of a device is i(t)= 6e^-2t mA and the voltage across the device is v(t)= 10di/dtV.
liberstina [14]

Answer:

a) 2,945 mC

b) P(t) = -720*e^(-4t) uW

c) -180 uJ

Explanation:

Given:

                           i (t) = 6*e^(-2*t)

                           v (t) = 10*di / dt

Find:

( a) Find the charge delivered to the device between t=0 and t=2 s.

( b) Calculate the power absorbed.

( c) Determine the energy absorbed in 3 s.

Solution:

-  The amount of charge Q delivered can be determined by:                      

                                       dQ = i(t) . dt

                  Q = \int\limits^2_0 {i(t)} \, dt = \int\limits^2_0 {6*e^(-2t)} \, dt = 6*\int\limits^2_0 {e^(-2t)} \, dt

- Integrate and evaluate the on the interval:

                   = 6 * (-0.5)*e^-2t = - 3*( 1 / e^4 - 1) = 2.945 C

- The power can be calculated by using v(t) and i(t) as follows:

                 v(t) = 10* di / dt = 10*d(6*e^(-2*t)) /dt

                 v(t) = 10*(-12*e^(-2*t)) = -120*e^-2*t mV

                 P(t) = v(t)*i(t) = (-120*e^-2*t) * 6*e^(-2*t)

                 P(t) = -720*e^(-4t) uW

- The amount of energy W absorbed can be evaluated using P(t) as follows:

                 W = \int\limits^3_0 {P(t)} \, dt = \int\limits^2_0 {-720*e^(-4t)} \, dt = -720*\int\limits^2_0 {e^(-4t)} \, dt

- Integrate and evaluate the on the interval:

                  W = -180*e^-4t = - 180*( 1 / e^12 - 1) = -180uJ

6 0
3 years ago
I have a molten Ni-Cu alloy with 60 wt%Ni. (ii) I cool it down to a temperature where I have both solid and liquid phases. At th
SIZIF [17.4K]

Answer:

The percentage of the remaining alloy would become solid is 20%

Explanation:

Melting point of Cu = 1085°C

Melting point of Ni = 1455°C

At 1200°C, there is a 30% liquid and 70% solid, the weight percentage of Ni in alloy is the same that percentage of solid, then, that weight percentage is 70%.

The Ni-Cu alloy with 60% Ni and 40% Cu, and if we have the temperature of alloy > temperature of Ni > temperature of Cu, we have the follow:

60% Ni (liquid) and 40% Cu (liquid) at temperature of alloy

At solid phase with a temperature of alloy and 50% solid Cu and 50% liquid Ni, we have the follow:

40% Cu + 10% Ni in liquid phase and 50% of Ni is in solid phase.

The percentage of remaining alloy in solid is equal to

Solid = (10/50) * 100 = 20%

4 0
3 years ago
Other questions:
  • A displacement transducer has the following specifications: Linearity error ± 0.25% reading Drift ± 0.05%/○C reading Sensitivity
    8·1 answer
  • A steel bar 110 mm long and having a square cross section 22 mm on an edge is pulled in tension with a load of 89,000 N, and exp
    15·1 answer
  • Global Courier Services will ship your package based on how much it weighs and how far you are sending the package. Packages abo
    14·1 answer
  • A polymeric extruder is turned on and immediately begins producing a product at a rate of 10 kg/min. An operator realizes 20 min
    12·1 answer
  • All of the following are categories for clutch covers except
    11·1 answer
  • How do engineering and technology impact the natural world and environment
    6·1 answer
  • Are the wooden pillars shown in the image below, a dead load?
    10·1 answer
  • What have you learned about designing solutions? How does this apply to engineering? Think of some engineering solutions that st
    15·1 answer
  • Shielding gases are used to protect the molten metal from what?
    13·1 answer
  • Identify three questions a patient might ask of the nuclear medicine technologist performing a nuclear medicine exam.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!