Answer:
The annual operating cost of the refrigerator is $102.78.
Explanation:
Power consumed by the refrigerator = 247 W = 247/1000 = 0.247 kW
Daily operation of the refrigerator = 19 hours
Annual operation of the refrigerator = 365 × 19 = 6,935 hours
Annual energy consumed = 0.247 kW × 6,935 hours = 1712.945 kWh
1 kWh of electricity cost $0.06
1712.945 kWh will cost 1712.945 × $0.06 = $102.78
Annual operating cost = $102.78
EPA Regulations provides a certified course for the technicians involved in the Air-conditioning system.
Answer: Option (b)
<u>Explanation:</u>
The EPA regulation has implemented an act called the "Clean Air Act" under the "section of 609".
This act provides some basic requirements for EPA Regulation such as follows;
- Refrigerant: This unit must be approved by EPA Regulations before being implemented into the atmosphere.
- Servicing: This system provides a certified course for technicians in service and also approve them with proper refrigerant equipment.
- Reuse Refrigerants: The use of recycled refrigerants must be properly monitored before it comes in to serve.
Answer:
q=2313.04
T=690.86°C
Explanation:
Given that
Thickness t= 20 cm
Thermal conductivity of firebrick= 1.6 W/m.K
Thermal conductivity of structural brick= 0.7 W/m.K
Inner temperature of firebrick=980°C
Outer temperature of structural brick =30°C
We know that thermal resistance

These are connect in series

Heat transfer

So heat flux
q=2313.04
Lets temperature between interface is T
Now by equating heat in both bricks

So T=690.86°C
Answer:
9500 kJ; 9000 Btu
Explanation:
Data:
m = 100 lb
T₁ = 25 °C
T₂ = 75 °C
Calculations:
1. Energy in kilojoules
ΔT = 75 °C - 25 °C = 50 °C = 50 K

2. Energy in British thermal units

Answer with Explanation:
The modulus of elasticity has an profound effect on the mechanical design of any machine part as explained below:
1) Effect on the stiffness of the member: The ability of any member of a machine to resist any force depends on the stiffness of the member. For a member with large modulus of elasticity the stiffness is more and hence in cases when the member has to resist a direct load the member with more modulus of elasticity resists the force better.
2)Effect on the deflection of the member: The deflection caused by a force in a member is inversely proportional to the modulus of elasticity of the member thus in machine parts in which we need to resist the deflections caused by the load we can use materials with greater modulus of elasticity.
3) Effect to resistance of shear and torque: Modulus of rigidity of a material is found to be larger if the modulus of elasticity of the material is more hence for a material with larger modulus of elasticity the resistance it offer's to shear forces and the torques is more.
While designing a machine element since the above factors are important to consider thus we conclude that modulus of elasticity has a profound impact on machine design.