Answer:
not clear pic...but it's definitely not A)
Correct choices are marked in bold:
travel in straight lines and can bounce off surfaces --> TRUE, normally electromagnetic waves travel in straight lines, however they can be reflected by objects, bouncing off their surfaces
travel through space at the speed of light --> TRUE, all electromagnetic waves in space (vacuum) travel at the speed of light,
)
travel only through matter --> FALSE; electromagnetic waves can also travel through vacuum
travel only through space --> FALSE, electromagnetic waves can also travel through matter
can bend around objects --> TRUE, this is what happens for instance when diffraction occurs: electromagnetic waves are bended around obstacles or small slits
move by particles bumping into each other --> FALSE, electromagnetic waves are oscillations of electric and magnetic fields, so no particles are involved
move by the interaction between an electric field and a magnetic field --> TRUE, electromagnetic waves consist of an electric field and a magnetic field oscillating in a direction perpendicular to the direction of motion of the wave
<span><u>Answer
</u>
The mass of 220 lb football has less than 288 lb football. So, it will be easier to move it since it will require less force. The heavy football will have a bigger momentum. Since 288 lb has more weight than 220 lb, it will have bigger inertia making it difficult for the players to stop it.
This makes it easier to tackle 220 lb football than 288 lb football.
</span>
Answer : C. Pascal's principle.
Explaination : Pascal's principle (well-known as Pascal's law) states that if a closed container contains a fluid at rest, then a small change in pressure at one side of the fluid is transmitted to each and every part of the fluid and also to the walls of the container without any loss. In a hydraulic lift, we need the same mechanism to work and so we take the help of Pascal's principle.
Hence, the correct option is C. Pascal's principle.
Answer:
Explanation:
The work done is defined as the product of force applied in the direction of displacement and the displacement.
W = F x d x Cosθ
where, F is the force applied, d be the displacement and θ be the angle between the displacement and force.
For the normal forces, the angle between the displacement and the force applied is 90 degree, and the value of Cos 90 is zero, so the work done is zero.