Answer:
Option A
Explanation:
At segment T-U, the substance changes from a liquid to a gas and does not change temperature.
The reason is because latent heat of vaporisation allows for the absorption of heat in the change of state and temperature remains constant until it has fully changed state.
- Weight (W) = 110 N
- Acceleration due to gravity (g) = 9.8 m/s^2
- Let the mass of the object be m.
- By using the formula, W = mg, we get,
- 110 N = 9.8 m/s^2 × m
- or, m = 110 N ÷ 9.8 m/s^2
- or, m = 11.2 Kg
<u>Answer:</u>
<em><u>The </u></em><em><u>mass </u></em><em><u>of </u></em><em><u>the </u></em><em><u>object </u></em><em><u>is </u></em><em><u>1</u></em><em><u>1</u></em><em><u>.</u></em><em><u>2</u></em><em><u> </u></em><em><u>Kg.</u></em>
Hope you could get an idea from here.
Doubt clarification - use comment section.
Heat energy and thermal energy are the same because heat energy is thermal energy. Also thermal energy and temperature are the same because temperature is measuring heat in degrees Celsius or degrees Fahrenheit. Hope this helps!
Answer:
Energy = 7.83 x 10⁻¹⁹ J
Energy = 6.63 x 10⁻¹⁹ J
Explanation:
The energy of a photon in terms of wavelength can be calculated by the following formula:

where,
h = Plank's Constant = 6.63 x 10⁻³⁴ Js
c = speed of light = 3 x 10⁸ m/s
λ = wavelength of light
Now, for λ = 254 nm = 2.54 x 10⁻⁷ m:

<u>Energy = 7.83 x 10⁻¹⁹ J</u>
<u></u>
Now, for λ = 300 nm = 3 x 10⁻⁷ m:

<u>Energy = 6.63 x 10⁻¹⁹ J</u>