Answer:
=6.5%
Explanation:
Mass of the ball:
]
Initial velocity of the ball: 
final velocity of the ball:
which is -30/100 of
=
Mass of the bottle: 
Initial velocity of the bottle: 
final velocity of the bottle:
is unknown (to find)
<em>by using conservation momentum, which stated that the initial momentum is equal to the final momentum.</em>
<em />
<em />
<em>so since the bottle is at rest firstly, therefore </em>
<em />
<em />
<em />
<em />
<em> </em><em>equation 1</em>
so now substitute
into equation 1

<em />
<em />
<em>collect the like terms</em>


divide both side by 

Now substitute

6.5%
<em />
Answer:

Explanation:
P = Power = 50 kW
n = Number of photons per second
h = Planck's constant = 
= Frequency = 781 kHz
r = Distance at which the photon intensity is i = 1 photon/m²
Power is given by

Photon intensity is given by

The distance is 
Answer:
SURE!!!...
But what to calculate!!!....
Answer:
Option D. ²²²₉₀Th
Explanation:
Let the unknown be ⁿₘZ. Thus, the equation becomes:
²²⁶₉₂U —> ⁴₂He + ⁿₘZ
Next, we shall determine n, m and Z. This can be obtained as follow:
For n:
226 = 4 + n
Collect like terms
226 – 4 = n
222 = n
n = 222
For m:
92 = 2 + m
Collect like terms
92 – 2 = m
90 = m
m = 90
For Z:
ⁿₘZ => ²²²₉₀Z => ²²²₉₀Th
Therefore, the complete equation becomes:
²²⁶₉₂U —> ⁴₂He + ⁿₘZ
²²⁶₉₂U —> ⁴₂He + ²²²₉₀Th
Thus, the unknown is ²²²₉₀Th
Answer: A and B
Explanation:
A
The wavelength of both transverse and longitudinal waves is measured parallel to the direction of the travel of the wave.
Because wavelength is the distance between the two successful crest or trough.
B)
Amplitude of longitudinal waves is measured at right angles to the direction of the travel of the wave and represents the maximum distance the molecule has moved from its normal position.
Because amplitude is the measure of maximum displacement from the original position