Answer:
At the end points of motion (either side) the velocity must be zero because the velocity is changing from - to + (it can't turn around around without passing thru zero,
The velocity will then increase to the midpoint of the motion.
m g h = 1/2 m v^2 where h is the vertical distance thru which the pendulum travels
It consists of our Solar system. Also, it contains many stars and alot of dust and gases. Our milky way is a galaxy full of amazing stuff, many stars blow up and cause auroras in the sky. If you go to watch the aurora borealis(northern lights) , its amazing and beautiful. The sky turns green and blue and the stars appear.
Mass (m)=55kg
acceleration (a)=9.81 m/s^2, this is the acceleration due to gravity.
initial velocity=0m/s. The skydiver doesn’t start with any speed because she is on the plane or helicopter.
final velocity=16m/s This is the velocity (speed) the skydiver reaches
The equation we use is KE=.5mv^2
Kinetic energy=.5 mass x velocity^2
KE=.5(55kg)(16m/s)^2
KE=.5(55kg)(256m/s)
KE=.5(14080J)
J=Joules
KE=7040J
Kinetic energy is 7040 Joules (J)
Hope this helps
Answer:
11.4 m/s
Explanation:
The expression for the Centripetal acceleration is :

Where, a is the accleration
v is the velocity around circumference of circle
R is radius of circle
In the given question,
a = g = Acceleration due to gravity as the car is at top = 
v = ?
R = 13.2 m
So,


<u>v = 11.4 m/s</u>
Answer:
v = 54.2 m / s
Explanation:
Let's use energy conservation for this problem.
Starting point Higher
Em₀ = U = m g h
Final point. Lower
= K = ½ m v²
Em₀ = Em_{f}
m g h = ½ m v²
v² = 2gh
v = √ 2gh
Let's calculate
v = √ (2 9.8 150)
v = 54.2 m / s