1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nlexa [21]
3 years ago
13

Resuelve:

Physics
1 answer:
Arlecino [84]3 years ago
3 0

The work done is 1764 J

Explanation:

The work done in lifting an object is equal to the gain in gravitational potential energy of the object:

W=mg \Delta h

where

m is the mass of the object

g is the acceleration of gravity

\Delta h is the change in height of the object

For the object in this problem, we have

m = 100 kg

g=9.8 m/s^2

\Delta h = 3 m -120 cm = 3 m- 1.20 m = 1.80 m

Therefore, the work done is

W=(100)(9.8)(1.80)=1764 J

Learn more about work and potential energy:

brainly.com/question/6763771

brainly.com/question/6443626

brainly.com/question/1198647

brainly.com/question/10770261

#LearnwithBrainly

You might be interested in
Having difficulty finding the PE and KE for these values no mass is given. Does anyone know to go solve these?
Alexandra [31]

11) 1.04\cdot 10^7 J

12) 1.04\cdot 10^7 J

13) 50.0 m/s

14) 41.6 m/s

Explanation:

11)

The potential energy of an object is the energy possessed by the object due to its position relative to the ground. It is given by

PE=mgh

where

m is the mass of the object

g is the acceleration due to gravity

h is the height relative to the ground

Here in this problem, when the train is at the top, we have:

m = 8325 kg (mass of the train + riders)

g=9.8 m/s^2 (acceleration due to gravity)

h = 127 m (height of the train at the top)

Substituting,

PE=(8325)(9.8)(127)=1.04\cdot 10^7 J

12)

According to the law of conservation of energy, the total mechanical energy of the train must be conserved (in absence of friction). So we can write:

KE_t + PE_t = KE_b + PE_b

where

KE_t is the kinetic energy at the top

PE_t is the potential energy at the top

KE_b is the kinetic energy at the bottom

PE_b is the potential energy at the bottom

The kinetic energy is the energy due to motion; since the train is at rest at the top, we have

KE_t=0

Also, at the bottom the height is zero, so the potential energy is zero

PE_b=0

Therefore, we find:

KE_b=PE_t=1.04\cdot 10^7 J

13)

The kinetic energy of an object is the energy of the object due to its motion. Mathematically, it is given by

KE=\frac{1}{2}mv^2

where

m is the mass of the object

v is the speed of the object

From question 12), we know that the kinetic energy of the train at the bottom is

KE=1.04\cdot 10^7 J

We also know that the mass is

m = 8325 kg

Therefore, we can calculate the speed of the train at the bottom:

v=\sqrt{\frac{2KE}{m}}=\sqrt{\frac{2(1.04\cdot 10^7)}{8325}}=50.0 m/s

14)

At the top of the second hill, the total mechanical energy of the train is still conserved.

Therefore, we can write again:

KE_1 + PE_1 = KE_2 + PE_2

where

KE_1 is the kinetic energy at the top of the 1st hill

PE_1 is the potential energy at the top of the 1st hill

KE_2 is the kinetic energy at the top of the 2nd hill

PE_2 is the potential energy at the top of the 2nd hill

From the previous questions, we know that

KE_1=0

and

PE_1=1.04\cdot 10^7 J

The height of the second hill is

h = 39 m

So we can also find the potential energy at the second hill:

PE_2=mgh=(8325)(9.8)(39)=3.2\cdot 10^6 J

So, the kinetic energy at the second hill is

KE_2=PE_1-PE_2=1.04\cdot 10^7 - 3.2\cdot 10^6 =7.2\cdot 10^6 J

And so, the speed is

v=\sqrt{\frac{2KE_2}{m}}=\sqrt{\frac{2(7.2\cdot 10^6)}{8325}}=41.6 m/s

4 0
3 years ago
What is the acceleration of a body moving with uniform velocity?
AfilCa [17]

Acceleration is the rate of change of velocity, a body moving with uniform velocity does not possess acceleration at all i.e. acceleration is zero





3 0
3 years ago
3. A pendulum with a 1.0-kg weight is set in motion from a position 0.04 m above the lowest point on the path of the weight.
gavmur [86]

Answer: K.E = 0.4 J

Explanation:

Given that:

M = 1.0 kg

h = 0.04 m

K.E = ?

According to conservative of energy

K.E = P.E

K.E = mgh

K.E = 1 × 9.81 × 0.04

K.E = 0.3924 Joule

The kinetic energy of the pendulum at the lowest point is 0.39 Joule

6 0
3 years ago
The Trans-Siberian Railroad is the longest single railroad in the world. Starting in Moscow, the tracks stretch 9,354 km across
Lubov Fominskaja [6]
103.9 hours, if you never stopped for any reason.
4 0
4 years ago
A piano emits frequencies the range from a low of about 28 Hz to a high of about 4200 Hz. Find the range of wavelengths in air a
Step2247 [10]
V=wave velocity , <span>f= frequency, </span><span>λ=wavelength </span>
<span>Use it to find corresponding wavelengths for</span><span> f=28 Hz </span>
<span>λ= v/f= 337/28=12.036 m 
</span>
<span>for f=4200 Hz </span>
<span>λ= v/f=337/4200= 0.08 m </span>
<span>So max. wavelength is 12.036 m and </span>
<span>Min Wavelength is 0.08 m </span>
<span>So the range is between .08 m and 12.036 m
</span>Hope this helps. 
4 0
4 years ago
Other questions:
  • Express the surface area of a cube as a function of its volume v.
    15·1 answer
  • What is the ratio of escape speed from earth to circular orbital speed? ignore air resistance.
    11·2 answers
  • An acorn falls from a branch located 9.8 m above the ground. After 1 s of falling, the acorn's velocity will be 9.8 m/s downward
    15·1 answer
  • Which of the following has the most momentum?
    15·1 answer
  • Scientist have changed the model of the atom.what experimental evidence led them to change from the previous model .
    12·1 answer
  • How fast can a human go before they reach terminal velocity?​
    13·1 answer
  • Watt (w) is a drived unit why​
    7·1 answer
  • During Photosynthesis, solar energy is absorbed. What kind of reaction is<br> taking place?
    6·2 answers
  • Which of the following is an example of a healthy behavior?
    10·1 answer
  • Name any three natural phenomena​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!