Answer:
C) 0.121 M
Explanation:
HCl + H₂O = H₃O⁺ + OH⁻
.121M .121M
HCl is a strong acid . It will dissociate almost 100 % so the concentration of acid and hydronium ion formed will be equal . It is to be noted that hydronium ion is formed due to association of H⁺ and H₂O . H⁺ is formed due to ionisation of HCl .
So concentrtion of hydronium ion ( H₃O⁺ ) will be .121 M.
Answer:
Iron(III) Oxide
Explanation:
You can tell that this formula is for the molecule Iron(III) oxide because it has two iron atoms and three oxygen atoms.
Fun Fact: There are three main types of iron oxides, with this being one of them.
Hope this helped! :^)
Answer:I belive it would be attracted seeing as how there are more magmatic charges on that side of no 2 and how there are more positive charges on the middle side of ballon no1.
Explanation:
Yes, free electrons appear in balanced redox reaction equations. However, this is only true for half-reactions. This is because redox reactions primarily involve the transfer of electrons, which are better visualized if explicitly shown in the balanced reactions. In reduction reactions, electrons are placed on the left side of the equation. Oxidation reactions show electrons on the right side of the equation.
Explanation:
A half reaction is either the chemical reaction or reduction reaction part of an oxidoreduction reaction. A half reaction is obtained by considering the amendment in chemical reaction states of individual substances concerned within the oxidoreduction reaction. Half-reactions are usually used as a way of leveling oxidoreduction reactions.The half-reaction on the anode, wherever chemical reaction happens, is Zn(s) = Zn2+ (aq) + (2e-).
The metal loses 2 electrons to create Zn2+. The half-reaction on the cathode wherever reduction happens is Cu2+ (aq) + 2e- = Cu(s).
Here, the copper ions gain electrons and become solid copper.
Thomson's model of the atom was called the plum pudding model. He discovered electrons, so he placed them in the atoms. This was before the nucleus was discovered.
Now, the current model is an atom that contains a positively charged nucleus (with both protons and neutrons), and negatively charged orbitals with electrons.