Answer:
The correct answer is -all of the above.
Explanation:
Muscle fatigue is a reduced ability in work capacity caused by work itself. It is known that altering oxygen is contracting skeletal muscle affects performance. Reduced O2 supply increases the rate of muscle fatigue.
The lactic acid is accumulated as it forms rapidly but the breaking of the lactic acid is slow down, which causes muscle fatigue. Less ATP and glycogen in muscle results in fatigue as the muscle is not able to generate energy to power contractions and therefore contributes to muscle fatigue.
4.) D
10.) C
12.) D
13.) D
14.) D
15.) D
Answer:
a) Ba(OH)₂.8H₂O(s) + <em>2 </em>NH₄SCN(s) → Ba(SCN)₂(s) +<em>10</em> H₂O(l) + <em>2</em> NH₃(g)
b) 3.14g must be added
Explanation:
a) For the reaction:
Ba(OH)₂.8H₂O(s) + NH₄SCN(s) → Ba(SCN)₂(s) + H₂O(l) + NH₃(g)
As you see, there are 8 moles of water in reactants and 2 moles of oxygen in octahydrate, thus, water moles must be 10:
Ba(OH)₂.8H₂O(s) + NH₄SCN(s) → Ba(SCN)₂(s) +<em>10</em> H₂O(l) + NH₃(g)
To balance hydrogens, the other coefficients are:
Ba(OH)₂.8H₂O(s) + <em>2 </em>NH₄SCN(s) → Ba(SCN)₂(s) +<em>10</em> H₂O(l) + <em>2</em> NH₃(g)
b) As you see in the balanced reaction, 1 mole of barium hydroxide octahydrate reacts with 2 moles of NH₄SCN. 6.5g of Ba(OH)₂.8H₂O are:
6.5 g × (1mol / 315.48g) =<em> 0.0206moles of Ba(OH)₂.8H₂O</em>. Thus, moles of NH₄SCN that must be used for a complete reaction are:
0.0206moles of Ba(OH)₂.8H₂O × ( 2 mol NH₄SCN / 1 mol Ba(OH)₂.8H₂O) = <em>0.0412moles of NH₄SCN</em>. In grams:
0.0412moles of NH₄SCN × ( 76.12g / 1mol) = <em>3.14g must be added</em>
Both are mainly composed of droplets of condensed water
Answer:
it is heterotrophic. it is unicellular. it does not have a nucleus.
Explanation: