Answer:
120g
Explanation:
Step 1:
We'll begin by writing the balanced equation for the reaction.
Sn + 2HF —> SnF2 + H2
Step 2:
Determination of the number of mole HF needed to react with 3 moles of Sn.
From the balanced equation above,
1 mole of Sn and reacted with 2 moles of HF.
Therefore, 3 moles Sn will react with = 3 x 2 = 6 moles of HF.
Step 3:
Conversion of 6 moles of HF to grams.
Number of mole HF = 6 moles
Molar Mass of HF = 1 + 19 = 20g/mol
Mass of HF =..?
Mass = number of mole x molar Mass
Mass of HF = 6 x 20
Mass of HF = 120g
Therefore, 120g of HF is needed to react with 3 moles of Sn.
good luck with that. I thought I had it, but it was not right.
Assume it is 1 litre and weighs 1kg.
2 percent of 1 kg is 20g.
20g divided by molar mass of NaOH.
20g divide by 40 = 0.5 mole
0.5 mole in a litre would be 0.5M
That is the answer: 0.5M
Scientia, meaning knowledge and skill
Answer:
5SiO2 + 2CaC2 = 5Si + 2CaO + 4CO2
Explanation:
balancing equations is a lot of trial and error. My strategy to approaching this equation was to get the O's balanced. After trying several combonations I found that I needed 10 O's on each side of the equation for the other elements to match up. After I balanced the O's, I balanced my C's to 4 on each side. Then I balanced my Ca's to have 2 on each side. And last but not least I balanced my Si to have 5 on each side.