Answer:
0.954
Explanation:
1000 grams is 1 kg
954 grams is 954/1000 kg or 0.954
The balanced chemical reaction is:
<span>Ca + Cl2 = CaCl2
</span>
We are given the amount of calcium metal to be used for this reaction. This will be the starting point for the calculations.
56 g Ca ( 1 mol Ca / 40.08 g Ca) (1 mol Cl2 / 1 mol Ca) ( 22.414 L Cl2 / 1 mol Cl2 ) = 31.32 L Cl2 gas produced from the reaction
<span>this
could be a substitution reaction. as you will locate, between the
hydrogen's on the propane chain replaced into substituted for a Br from
Br2. that's particularly no longer a addition reaction! addition
reactions artwork once you have a AlkENE! by using fact that's an AlkANE
it would not have a double bond to act as a nucleophile to attack the
Br2 (which might act as a electrophile to boot reactions).</span>
Answer:
ΔG°rxn = +50.8 kJ/mol
Explanation:
It is possible to obtain ΔG°rxn of a reaction at certain temperature from ΔH°rxn and S°rxn, thus:
<em>ΔG°rxn = ΔH°rxn - T×S°rxn (1)</em>
In the reaction:
2 HNO3(aq) + NO(g) → 3 NO2(g) + H2O(l)
ΔH°rxn = 3×ΔHfNO2 + ΔHfH2O - (2×ΔHfHNO3 + ΔHfNO)
ΔH°rxn = 3×33.2kJ/mol + (-285.8kJ/mol) - (2×-207.0kJ/mol + 91.3kJ/mol)}
ΔH°rxn = 136.5kJ/mol
And S°:
S°rxn = 3×S°NO2 + S°H2O - (2×S°HNO3 + S°NO)
ΔH°rxn = 3×0.2401kJ/molK + (0.0700kJ/molK) - (2×0.146kJ/molK + 0.2108kJ/molK)
ΔH°rxn = 0.2875kJ/molK
And replacing in (1) at 298K:
ΔG°rxn = 136.5kJ/mol - 298K×0.2875kJ/molK
<em>ΔG°rxn = +50.8 kJ/mol</em>
<em />