It is mainly because a solid has a much stronger atom bonds compared to liquid
When liquid is poured, it will always tried to fill up its container because the weakness in its atom bond allow it to do so.
Meanwhile, the form of a solid will stay exactly the same no matter where we put it because the strength of their bond will retain their form.
Answer:
Approximately
(assuming that
.)
Explanation:
Let
denote the force that this spring exerts on the object. Let
denote the displacement of this spring from the equilibrium position.
By Hooke's Law, the spring constant
of this spring would ensure that
.
Note that the mass of the object attached to this spring is
. Thus, the weight of this object would be
.
Assuming that this object is not moving, the spring would need to exert an upward force of the same magnitude on the object. Thus,
.
The spring in this question was stretched downward from its equilibrium by:
.
(Note that
is negative since this displacement points downwards.)
Rearrange Hooke's Law to find
in terms of
and
:
.
Answer:
3.90 degrees
Explanation:
Let g= 9.81 m/s2. The gravity of the 30kg grocery cart is
W = mg = 30*9.81 = 294.3 N
This gravity is split into 2 components on the ramp, 1 parallel and the other perpendicular to the ramp.
We can calculate the parallel one since it's the one that affects the force required to push up
F = WsinΘ
Since customer would not complain if the force is no more than 20N
F = 20



So the ramp cannot be larger than 3.9 degrees
False, it does create pollution form the smoke stacks and after the process is done they have barrels of toxic waste
<h2>
Answers:</h2>
-The first direct detection of gravitational waves came in 2015
-The existence of gravitational waves is predicted by Einstein's general theory of relativity
-Gravitational waves carry energy away from their sources of emission
<h2>
Explanation:</h2>
Gravitational waves were discovered (theoretically) by Albert Einstein in 1916 and "observed" for the first time in direct form in 2015 (although the results were published in 2016).
These gravitational waves are fluctuations or disturbances of space-time produced by a massive accelerated body, modifying the distances and the dimensions of objects in an imperceptible way.
In this context, an excellent example is the system of two neutron stars that orbit high speeds, producing a deformation that propagates like a wave,<u> in the same way as when a stone is thrown into the water</u>. So, in this sense, gravitational waves carry energy away from their sources
.
Therefore, the correct options are D, E and F.