The time taken by the stone to hit the ground would be 5.12 seconds.
<h3>What are the three equations of motion?</h3>
There are three equations of motion given by Newton
The first equation is given as follows
v = u + at
the second equation is given as follows
S = ut + 1/2×a×t²
the third equation is given as follows
v² - u² = 2×a×s
Keep in mind that these calculations only apply to uniform acceleration.
As given in the problem, a stone is dropped from the helicopter which is ascending at the speed of 19.6 m/s
height(S) = 156.8 meters
initial velocity(u) = -19.6 m/s
acceleration(a) = 9.81 m/s²
By using the second equation of motion given by newton
S = ut + 1/2at²
S = 156.8m ,u= -19.6 m/s , a= 9.81 m/s² and t =? seconds
156.8= -19.6t + 9.81t²
t = 5.12 seconds
Thus, the time taken by the stone to hit the ground would be 5.12 seconds.
Learn more about equations of motion from here,
brainly.com/question/5955789
#SPJ1
Answer:
10m/s
Explanation:
Using the law of conservation of momentums
M1u1+m2u2 = (m1+m2)v
Substitute.
4000(10)+1500(10) = (4000+1500)v
40,000+15,000 = 5,500v
55000 = 5500v
v = 55000/5500
v= 10m/s
Hence the velocity of the truck after Collision is 10m/s
Exert force upward.
Like when you pick something up from the floor, or walk up the stairs.

9. An object which is in circular motion (moving along a circle) is said to be accelerating because it changes it's direction constantly even if it is moving with a constant speed. cuz acceleration is change in either magnitude or direction of an object with respect to time.
therefore, it's still acceleration as change in direction with time.
10. Average speed of an object can be calculated by dividing the total distance covered by an object by time taken to cover that distance.
i.e
it can be re- arranged to find the distance as :
11. speed = 20 m/s : conversion into km/h
distance covered : 4 km = 4000 m
time taken = 200 seconds
12. let's use the first equation of motion to find the acceleration :
Four electrons are placed at the corner of a square
So we will first find the electrostatic potential at the center of the square
So here it is given as

here
r = distance of corner of the square from it center



now the net potential is given as


now potential energy of alpha particle at this position

Now at the mid point of one of the side
Electrostatic potential is given as

here we know that



now potential is given as


now final potential energy is given as

Now work done in this process is given as


