Answer: 4.98 m/s
Explanation:
You solve these kinetic energy, potential energy problems by using the fact P.E.+ K.E. = a constant as long as friction is ignored.
PEi = 0 in this case
KEi = ½mVi² = PEf+KEf = mghf + ½mVf²
½1210*8.31² = 1210*9.8*2.26 + ½1210*Vf²
½1210*Vf² = ½1210*8.31² - 1210*9.8*2.26
Vf² = 8.31² - 2*9.8*2.26 = 4.98² so Vf = 4.98m/s
Answer: now take this with a grain of salt because I'm in middle school but I think that the more massive object has more potential energy.
Explanation:
Answer:
The answer are given above in attachment.
For the answer to the question above, on Earth, a one-pound object has a mass of about 0.453592 kilograms.
<span>Therefore the man's mass is 155 * 0.453592 = 70.30676 kilograms. </span>
<span>The part about the Moon's gravity is irrelevant. While the weight of a person or object would be different on the Moon, the mass would be the same.</span>