1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nimfa-mama [501]
2 years ago
6

If a man weight 155 lb on earth, specify

Physics
1 answer:
Natali [406]2 years ago
3 0
For the answer to the question above, on Earth, a one-pound object has a mass of about 0.453592 kilograms. 

<span>Therefore the man's mass is 155 * 0.453592 = 70.30676 kilograms. </span>

<span>The part about the Moon's gravity is irrelevant. While the weight of a person or object would be different on the Moon, the mass would be the same.</span>
You might be interested in
(i). A ball of mass 1.500 kg is attached to the end of a cord 1.50 m long. The ball moves in a horizontal circle. If the cord ca
Aleks04 [339]

(a) Let v be the maximum linear speed with which the ball can move in a circle without breaking the cord. Its centripetal/radial acceleration has magnitude

a_{\rm rad} = \dfrac{v^2}R

where R is the radius of the circle.

The tension in the cord is what makes the ball move in its plane. By Newton's second law, the maximum net force on it is

F = (1.500\,\mathrm{kg}) a_{\rm rad}

so that

(1.500\,\mathrm{kg}) \dfrac{v^2}{1.50\,\rm m} = 64.0\,\mathrm N

Solve for v :

v^2 = \dfrac{(64.0\,\mathrm N)(1.50\,\mathrm m)}{1.500\,\rm kg} \\\\ \implies \boxed{v = 8.00 \dfrac{\rm m}{\rm s}}

(b) The net force equation in part (a) leads us to the relation

F = \dfrac{mv^2}R \implies v = \sqrt{\dfrac{FR}m}

so that v is directly proportional to the square root of R. As the radius R increases, the maximum linear speed v will also increase, so the cord is less likely to break if we keep up the same speed.

6 0
1 year ago
Two bicyclist, originally separated by a distance of 20 miles, are each traveling at a uniform speed of 10 miles per hour toward
Radda [10]

Answer:

D = 25 miles

Explanation:

To solve this problem, we just need to know how much time it took both bicyclists to collide and that will be the same amount of time that the bee flew at 25miles per hour. With those values we could calculate the distance it traveled.

Since both bicyclists collide, we know that Xa=Xb, so:

Xa = V*t = 10*t     and    Xb = 20 - V*t = 20 - 10*t

10*t = 20 - 10*t      Solving for t:

t = 1 hour  Now we can calculate the distance for the bee:

D = Vbee * t = 25 * 1 = 25 miles

6 0
3 years ago
The weight of a person is 500N and his foot imprint area is 0.5m^2.Calculate the total pressure exerted by person when he stands
Ghella [55]

Answer:

Pressure on both feet will be 500N/m^2  

Explanation:

Weight of the person F = 500 N

Area of foot print A=0.5m^2

Area of both the foot A=2\times 0.5=1m^2

We have to find pressure on both the feet

Pressure is equal to ratio of force and area

So pressure P=\frac{F}{A}

P=\frac{500}{1}=500N/m^2

So the pressure on both feet will be 500N/m^2 when person stands on both feet.

7 0
3 years ago
When making a turn, do not have the steering wheel turned in the direction of the turn before beginning the turning maneuver.a)
RideAnS [48]

Answer:

a) True.

Explanation:

If you turn the wheel in the direction of the turn before beginning the turning maneuver then it's possible that there might be not enough space available for turning and also if you are waiting for the traffic to get clear with rear  ended then it will get pushed forward onto the coming traffic.

7 0
3 years ago
an object of mass m is traveling at constant speed v in a circular path of radius r. how much work is done by the centripetal fo
vlada-n [284]

The work done is by the centripetal force on mass m during an angular displacement of 2π revolutions mv²2π /r J

Centripetal force - a force acts on an moving object in circular path.

the centripetal force is given by

F= mv²/r       (equation1)

Work done is given by

W = Fd          (equation 2)

d = 2π

work is done by the centripetal force on mass m during an angular displacement of 2π revolutions is given by:

to calculate work done using equation 1 in 2  we get

W = mv² d/r

 W = mv² × 2π /r J

The work done is by the centripetal force on mass m during an angular displacement of 2π revolutions mv²2π /r J

To know more about centripetal force :

brainly.com/question/13031430

#SPJ4

6 0
1 year ago
Other questions:
  • A quantitative description of kinematics involves using __ to describe the motion
    6·2 answers
  • How are the helium atoms in this model different from real helium atoms?
    14·2 answers
  • Which of the following is not a double-replacement?
    8·1 answer
  • Two wooden crates rest on top of one another. The smaller top crate has a mass of m1 = 24 kg and the larger bottom crate has a m
    6·1 answer
  • One light-year is the distance light travels in one year. This distance is equal to 9.461 1015 m. After the sun, the star neares
    6·1 answer
  • A banked circular highway is designed for traffic moving
    13·1 answer
  • Write all the different ways you can think of that describe what it means to be healthy
    12·1 answer
  • Two sound waves (wave X and wave Y) are moving through a medium at the same speed. If wave X has a greater frequency than wave Y
    5·1 answer
  • Help me pleaseeeee ​
    14·2 answers
  • if a car is moving down the highway at a constant velocity what does this mean about the cars acceleration?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!