Answer:
The amplitude of the subsequent oscillations is 13.3 cm
Explanation:
Given;
mass of the block, m = 1.25 kg
spring constant, k = 17 N/m
speed of the block, v = 49 cm/s = 0.49 m/s
To determine the amplitude of the oscillation.
Apply the principle of conservation of energy;
maximum kinetic energy of the stone when hit = maximum potential energy of spring when displaced

Therefore, the amplitude of the subsequent oscillations is 13.3 cm
A. I looked it up and it should be somewhere around A
The magnitude of acceleration is (change in speed) / (time for the change).
Change in speed = (speed at the end) - (speed at the beginning) =
(16 m/s) - (0) = 16 m/s .
Time for the change = 4 s .
Magnitude of acceleration = (16 m/s) / (4 s) = 4 m/s per sec = 4 m/s² .
Answer:
Explanation:
The sound moves in the form of waves. The amplitude is the distance between the highest and the lowest point of a wave. In this way the amplitude indicates the amount of energy that a sound signal contains.
Intensity is the amount of acoustic energy that a sound contains. Intensity is measured in decibels. Volume is a measure of the energy that a signal carries, being a magnitude of intensity.
In this way it is possible to say that the energy of a signal is closely related to its amplitude, but its development over time is also important.
The tone or height is the quality that distinguishes between a high or low sound and a low or high sound.
Answer:
the answer is C
Explanation:
gravity forces down not up or sideways.