We are asked to solve and determine the magnitude of the current flowing through the first device. In order for us to have a better understanding of the problem, we can refer to the attached picture which contains electric circuit diagram. Since it the problem we are already given with an electromotive source or the voltage supply and since the two resistance is in parallel, it would clearly mean that the voltage drop in each resistance is just the same. The resistance 1 uses the 40 volts at the same time the resistance 2 uses 40 volts also. Solving further for the current, we can apply Ohm's law which V = IR where "V" represents the voltage, the "I" represents the current and "R" represents the resistance.
Such as the solution in obtaining current is shown below:
I = V / R, substitute values we have it
I = 40 volts / 1208 ohms
I = 0.0331 Amperes
Therefore, the current flowing in the first device is
0.033 Amperes or 33 milliAmperes.
Answer:
374.39 J/K
Explanation:
Entropy: This can be defined as the degree of disorder or randomness of a substance.
The S.I unit of entropy is J/K
ΔS = ΔH/T ..................................... Equation 1
Where ΔS = entropy change, ΔH = Heat change, T = temperature.
ΔH = cm................................... Equation 2
Where,
c = specific latent heat of fusion of water = 333000 J/kg, m = mass of ice = 0.3071 kg.
Substitute into equation 2
ΔH = 333000×0.3071
ΔH = 102264.3 J.
Also, T = 273.15 K
Substitute into equation 1
ΔS = 102264.3/273.15
ΔS = 374.39 J/K
Thus, The change in entropy = 374.39 J/K
Answer: momentum = 6kgm/s
Explanation:
given that the baseball pitcher is at stationary position, his velocity will be equal to zero. If velocity is zero, his linear momentum will therefore equal to zero.
Linear momentum is the product of mass and velocity. Given that the baseball has
Mass M = 0.15 kg
Velocity V = 40 m/s
Momentum = MV
Momentum = 0.15 × 40 = 6 kgm/s
Answer:
faster; more kinetic energy
Explanation: