Answer:
The answer is B
Explanation:
Because when the both sides aren't balanced one side has to cause motion. (fall down)
Answer: atmospheric is air by the earth and pressure is just someone or something doing it
Explanation:
Dispersion angle = 0.3875 degrees.
Width at bottom of block = 0.09297 cm
Thickness of rainbow = 0.07038 cm
Snell's law provides the formula that describes the refraction of light. It is:
n1*sin(θ1) = n2*sin(θ2)
where
n1, n2 = indexes of refraction for the different mediums
θ1, θ2 = angle of incident rays as measured from the normal to the surface.
Solving for θ2, we get
n1*sin(θ1) = n2*sin(θ2)
n1*sin(θ1)/n2 = sin(θ2)
asin(n1*sin(θ1)/n2) = θ2
The index of refraction for air is 1.00029, So let's first calculate the angles of the red and violet rays.
Red:
asin(n1*sin(θ1)/n2) = θ2
asin(1.00029*sin(40.80)/1.641) = θ2
asin(1.00029*0.653420604/1.641) = θ2
asin(0.398299876) = θ2
23.47193844 = θ2
Violet:
asin(n1*sin(θ1)/n2) = θ2
asin(1.00029*sin(40.80)/1.667) = θ2
asin(1.00029*0.653420604/1.667) = θ2
asin(0.39208764) = θ2
23.08446098 = θ2
So the dispersion angle is:
23.47193844 - 23.08446098 = 0.38747746 degrees.
Now to determine the width of the beam at the bottom of the glass block, we need to calculate the difference in the length of the opposite side of two right triangles. Both triangles will have a height of 11.6 cm and one of them will have an angle of 23.47193844 degrees, while the other will have an angle of 23.08446098 degrees. The idea trig function to use will be tangent, where
tan(θ) = X/11.6
11.6*tan(θ) = X
So for Red:
11.6*tan(θ) = X
11.6*tan(23.47193844) = X
11.6*0.434230136 = X
5.037069579 = X
And violet:
11.6*tan(θ) = X
11.6*tan(23.08446098) = X
11.6*0.426215635 = X
4.944101361 = X
So the width as measured from the bottom of the block is: 5.037069579 cm - 4.944101361 cm = 0.092968218 cm
The actual width of the beam after it exits the flint glass block will be thinner. The beam will exit at an angle of 40.80 degrees and we need to calculate the length of the sides of a 40.80/49.20/90 right triangle. If you draw the beams, you'll realize that:
cos(θ) = X/0.092968218
0.092968218*cos(θ) = X
0.092968218*cos(40.80) = X
0.092968218*0.756995056 = X
0.070376481 = X
So the distance between the red and violet rays is 0.07038 cm.
Answer:
86.4 hrs
Explanation:
The amount of bacteria is initially 1
It doubles every 24 hrs.
After first 24 hrs, the amount = 2
After next 24 hrs = 4
After next 24 hrs = 8
After next 24 hrs = 16
After next 24 hrs = 32
After next 24 hrs = 64
After next 24 hrs = 128
After next 24 hrs = 256
Total time taken to reach 256 = 24 x 8 = 192 hrs
For the bacteria culture on the rocket that travels at a speed of 0.893c relative to the earth, this time is contracted by the relationship
t = t'(1 - ¥^2)^0.5
Where t is the contracted time =?
t' is the time on earth
¥ = v/c
Where v is the speed of the rocket
c is the speed of light
since v = 0.893c
¥ = 0.893
Substituting, we have
t = 192 x (1 - 0.893^2)^0.5
t = 192 x 0.2025^0.5
t = 192 x 0.45 = 86.4 hrs
As the metal expands as does the road bed so neither really effevts those foing over the bridge. as it is hot the metal will expand and so will most tarmac on roads.