Answer:
electron sea model for metals suggest that valence electrons drift freely around the metal cations.
Explanation:
Explanation: In electron sea model, the valence electrons in metals are delocalized instead of orbiting around the nucleus. ... These electrons are free to move within the metal atoms. Thus, we can conclude that the electron sea model for metals suggest that valence electrons drift freely around the metal cations.
Answer:
0.52 mol
Explanation:
Using the general gas equation formula:
PV = nRT
Where;
P = pressure (atm)
V = volume (Liters)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (K)
At STP (standard temperature and pressure), temperature of a gas is 273K, while its pressure is 1 atm
Using PV = nRT
n = PV/RT
n = (1 × 11.74) ÷ (0.0821 × 273)
n = 11.74 ÷ 22.41
n = 0.52 mol
There are 0.52 moles in the basketball
<span>Solutes become electrolytes by ionizing. Ionic compounds therefore make good electrolytes; covalent compounds don't.</span>
Answer: 9.9 grams
Explanation:
To calculate the moles, we use the equation:

a) moles of 

b) moles of 


According to stoichiometry :
1 mole of
combine with 1 mole of
Thus 0.33 mole of
will combine with =
mole of
Thus
is the limiting reagent as it limits the formation of product.
As 1 mole of
give = 1 mole of 
Thus 0.33 moles of
give =
of 
Mass of 
Thus theoretical yield (g) of
produced by the reaction is 9.9 grams