B 2
is which shell are the valence electrons of the elements in period 2 found
Mg3(PO4)2 - the molar mass would be 262g/mol, which is 100%
Atomic mass of Mg is 24, since we have 3Mg we multiply by 3 and get a mass of 72
262 : 100% = 72 : x%
x = 72*100 / 262
x = 27.5%
And do that for every element — get the molar mass of P and multiply by 2, use a ratio, and get the molar mass of O and multiply by 8 and use ratios :)
A measure of thermal energy transferred between two different bodies at different temperatures would be the correct answer. So, the third option.
<span>We look at the end of the day:
n(HNO3) added = 0.500*17.0/1000 = 0.00850 mol
n(NH3) = 0.200*75.0/1000 - 0.00850 = 0.00650 mol
[NH3] left = 0.00650*1000/(17.0+75.0) = 0.070652
M [OH-] = Kb * [NH3] = 0.070652*1.8*10^(-5) = 1.27174 x 10^(-6)
pOH = -log[OH-] ≈ 5.8956 pH = 14 - pOH ≈ 8.10</span>
Given:
M = 0.0150 mol/L HF solution
T = 26°C = 299.15 K
π = 0.449 atm
Required:
percent ionization
Solution:
First, we get the van't Hoff factor using this equation:
π = i MRT
0.449 atm = i (0.0150 mol/L) (0.08206 L atm / mol K) (299.15 K)
i = 1.219367
Next, calculate the concentration of the ions and the acid.
We let x = [H+] = [F-]
[HF] = 0.0150 - x
Adding all the concentration and equating to iM
x +x + 0.0150 - x = <span>1.219367 (0.0150)
x = 3.2905 x 10^-3
percent dissociation = (x/M) (100) = (3.2905 x 10-3/0.0150) (100) = 21.94%
Also,
percent dissociation = (i -1) (100) = (</span><span>1.219367 * 1) (100) = 21.94%</span>