(C) Air Resistance
<u>Explanation:</u>
When an object falls through air, air resistance acts on it in upward direction. When air resistance acts, acceleration during a fall will be less than g because air resistance affects the motion of the falling objects by slowing it down. Air resistance depends on two important factors - the speed of the object and its surface area. Increasing the surface area of an object decreases its speed.
"Gamma rays" is the name that we call the shortest of all electromagnetic waves. They're shorter than radio waves, microwaves, infrared waves, heat waves, visible light waves, ultraviolet waves, and X-rays. They extend all the way down to waves that are as short as the distance across an atom.
Being so short, they carry lots of energy. They can penetrate many materials, and they can damage living cells and DNA. They're dangerous.
The sun puts out a lot of gamma radiation. The atmosphere (air) filters out a lot of it, otherwise there couldn't even be any life on Earth.
As soon as astronauts fly out of the atmosphere, they need a lot of shielding from gamma rays.
You know the precautions we take when we're around X-rays. The same precautions apply around gamma rays, only a lot more so.
It's only in the past several years that we've learned how to MAKE gamma rays without blowing things up. Also, how to control them, and how to use them for medical and industrial applications.
** Missing information: The vertical distance from surface of liquid to bottom of the object is sought in this question, with the condition that the object is at equilibrium **
Ans: The vertical distance = y = M/(ρA)
Explanation:Support the vertical distance = y
Object's density = M/(A*h) (since A*h = volume)
By applying the condition,
(M/(Ah))/ρ = y/h
M/(ρAh) = y/h
y = M/(ρA)