Answer: Option (b) is correct.
Explanation:
Since we know that,
P = VI
where;
P = power
V= Voltage
I = Current
Since it's given that,
P = 600W
I = 2.5 A
equating these values in the above equation, we get;
<em>V =
</em>
<em>V = 240 V</em>
Answer: D. Density of uranium within nuclear fuel rods is insufficient to become explosive
Explanation: Nuclear power plants use the same fuel as nuclear bombs, i.e. radioactive Uranium-235 isotope. However, in a nuclear power plant, the energy is released more slowly unlike in a nuclear bomb. <em>The energy released is through nuclear fission, and radioactive decay occurs at the same rate as in nuclear bombs. therefore, option A, B</em><em> </em><em>and C are incorrect.</em>
The primary reason why nuclear chain reactions within power plants do NOT produce bomb-like explosions is because the uranium fuel rods used in electricity generation is not sufficiently enriched in Uranium-235 to produce a nuclear detonation. This is the same idea in option D which is the correct option.
Answer:
<h2>a) 50°</h2><h2>b) 40°</h2>
Explanation:
Check the complete diagram n the attachment below
a) The angle of incidence on a plane surface is the angle between the incidence ray and the normal ray acting on a plane surface. The normal ray is the ray perpendicular to the surface while the incidence ray is the ray striking a plane surface.
According to the diagram, the angle of reflection r₂ on M₂ is 90°-g where g is the angle of glance.
Given angle of glance on M₂ to be 40°, r₂ = 90-40 = 50°
According the second law of reflection, the angle of incidence = angle of reflection, therefore i₂ = r₂ = 50° (on M₂)
Also ∠OO₂O₁ = ∠OO₁O₂ = 40° (angle of glance on M₁){alternate angle}
The angle of incidence on M₁ = 90° - 40° = 50°
b) The angle of incidence to the surface of M₁(∠PO₁A)will be the angle of glance on M₁ which is equivalent to 40°