Answer:
A.) Change only the coefficients
Explanation:
An equation is balanced when there is an equal quantity of each type of element on both sides of a reaction. When balancing an equation, the only way to manipulate the amounts of each element is by changing the coefficient values. The coefficients alter the amount of each molecule in the reaction.
The subscripts cannot be altered. If you were to change the subscripts, you would be altering the amount of atoms in a particular molecule.
Answer:
0.244 M.
Explanation:
From the question given above, the following data were obtained:
Molarity of stock solution (M₁) = 1 M
Volume of stock solution (V₁) = 0.305 L
Volume of diluted solution (V₂) = 1.25 L
Molarity of diluted solution (M₂) =?
The molarity of the diluted solution can be obtained by using the dilution formula as illustrated below:
M₁V₁ = M₂V₂
1 × 0.305 = M₂ × 1.25
0.305 = M₂ × 1.25
Divide both side by 1.25
M₂ = 0.305 / 1.25
M₂ = 0.244 M
Thus, the molarity of the diluted solution is 0.244 M
Lemon juice because it releases carbon dioxide
Answer:
Gases are easily compressed. We can see evidence of this in Table 1 in Thermal Expansion of Solids and Liquids, where you will note that gases have the largest coefficients of volume expansion. The large coefficients mean that gases expand and contract very rapidly with temperature changes. In addition, you will note that most gases expand at the same rate, or have the same β. This raises the question as to why gases should all act in nearly the same way, when liquids and solids have widely varying expansion rates.
The answer lies in the large separation of atoms and molecules in gases, compared to their sizes, as illustrated in Figure 2. Because atoms and molecules have large separations, forces between them can be ignored, except when they collide with each other during collisions. The motion of atoms and molecules (at temperatures well above the boiling temperature) is fast, such that the gas occupies all of the accessible volume and the expansion of gases is rapid. In contrast, in liquids and solids, atoms and molecules are closer together and are quite sensitive to the forces between them.