There are 2 electrons in the overlapping region.
Chlorine is the second member of the halogen group which are form of family of elements that resemble one another very closely.
The electronic configuration of chlorine shows the arrangement of chlorine electrons within it's atom.
At the outer most shell of the atom is seven electrons, therefore requires only one electron each to attain the octet arrangement.
The overlapping of the orbitals indicates the chemical bond formed by sharing of electrons between atoms called covalent bonding.
To complete it's outer most shell, it will need to share electron with another chlorine atom.
Therefore, there are 2 electrons in the overlapping region.
Learn more here:
brainly.com/question/16396974
Answer: B. 4 moles Fe and 3 moles CO2
Explanation:
write a balanced chemical reaction
that is FeO3 + 3 CO → 2 Fe + 3CO2
2 moles of Fe2O3 reacted with 3 x2=6 moles of Co to form Fe and CO2 therefore CO was in excess and Fe2O3 was limiting reagent.
use the mole ratio to determine the moles of each product.
that is the mole ratio 0f Fe2O3 : Fe is 1:2 therefore the moles of Fe = 2x2=4 moles
the mole ratio of Fe2CO3 : CO2 is 1: 3 therefore the moles of Co2 = 2 x3 = 6 moles
Answer:

Explanation:
![\Delta H_{rxn}^{0}=\sum [n_{i}\times \Delta H_{f}^{0}(product)_{i}]-\sum [n_{j}\times \Delta H_{f}^{0}(reactant_{j})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%5E%7B0%7D%3D%5Csum%20%5Bn_%7Bi%7D%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28product%29_%7Bi%7D%5D-%5Csum%20%5Bn_%7Bj%7D%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28reactant_%7Bj%7D%29%5D)
Where
and
are number of moles of product and reactant respectively (equal to their stoichiometric coefficient).
is standard heat of formation and
is standard enthalpy change for reaction at 
So, ![\Delta H_{rxn}=[3mol\times \Delta H_{f}^{0}(CO_{2})_{g}]+[4mol\times \Delta H_{f}^{0}(H_{2}O)_{g}]-[1mol\times \Delta H_{f}^{0}(C_{3}H_{8})_{g}]-[5mol\times \Delta H_{f}^{0}(O_{2})_{g}]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B3mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28CO_%7B2%7D%29_%7Bg%7D%5D%2B%5B4mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28H_%7B2%7DO%29_%7Bg%7D%5D-%5B1mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28C_%7B3%7DH_%7B8%7D%29_%7Bg%7D%5D-%5B5mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28O_%7B2%7D%29_%7Bg%7D%5D)
or, ![\Delta H_{rxn}=[3mol\times -393.509kJ/mol]+[4mol\times -241.818kJ/mol]-[1mol\times -103.8kJ/mol]-[5mol\times 0kJ/mol]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B3mol%5Ctimes%20-393.509kJ%2Fmol%5D%2B%5B4mol%5Ctimes%20-241.818kJ%2Fmol%5D-%5B1mol%5Ctimes%20-103.8kJ%2Fmol%5D-%5B5mol%5Ctimes%200kJ%2Fmol%5D)
or, 