1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
quester [9]
3 years ago
9

A pair of skew lines

Mathematics
2 answers:
EastWind [94]3 years ago
6 0

Answer:

Hmmm What about the pair of skew lines lol

Step-by-step explanation:

Could you add more details/options !!!!

-I'd be glad to help <3 !!!!

xxMikexx [17]3 years ago
6 0
I’m pretty sure u have to multiply it
You might be interested in
he expression 34×12 represents a fraction of a circle that is shaded. Which diagram shows the correct shading?
Tomtit [17]

what is the shading

Step-by-step explanation:

???????

5 0
2 years ago
Find the exact value of the expression.<br> tan( sin−1 (2/3)− cos−1(1/7))
Sonja [21]

Answer:

\tan(a-b)=\frac{2\sqrt{5}-20\sqrt{3}}{5+8\sqrt{15}}

Step-by-step explanation:

I'm going to use the following identity to help with the difference inside the tangent function there:

\tan(a-b)=\frac{\tan(a)-\tan(b)}{1+\tan(a)\tan(b)}

Let a=\sin^{-1}(\frac{2}{3}).

With some restriction on a this means:

\sin(a)=\frac{2}{3}

We need to find \tan(a).

\sin^2(a)+\cos^2(a)=1 is a Pythagorean Identity I will use to find the cosine value and then I will use that the tangent function is the ratio of sine to cosine.

(\frac{2}{3})^2+\cos^2(a)=1

\frac{4}{9}+\cos^2(a)=1

Subtract 4/9 on both sides:

\cos^2(a)=\frac{5}{9}

Take the square root of both sides:

\cos(a)=\pm \sqrt{\frac{5}{9}}

\cos(a)=\pm \frac{\sqrt{5}}{3}

The cosine value is positive because a is a number between -\frac{\pi}{2} and \frac{\pi}{2} because that is the restriction on sine inverse.

So we have \cos(a)=\frac{\sqrt{5}}{3}.

This means that \tan(a)=\frac{\frac{2}{3}}{\frac{\sqrt{5}}{3}}.

Multiplying numerator and denominator by 3 gives us:

\tan(a)=\frac{2}{\sqrt{5}}

Rationalizing the denominator by multiplying top and bottom by square root of 5 gives us:

\tan(a)=\frac{2\sqrt{5}}{5}

Let's continue on to letting b=\cos^{-1}(\frac{1}{7}).

Let's go ahead and say what the restrictions on b are.

b is a number in between 0 and \pi.

So anyways b=\cos^{-1}(\frac{1}{7}) implies \cos(b)=\frac{1}{7}.

Let's use the Pythagorean Identity again I mentioned from before to find the sine value of b.

\cos^2(b)+\sin^2(b)=1

(\frac{1}{7})^2+\sin^2(b)=1

\frac{1}{49}+\sin^2(b)=1

Subtract 1/49 on both sides:

\sin^2(b)=\frac{48}{49}

Take the square root of both sides:

\sin(b)=\pm \sqrt{\frac{48}{49}

\sin(b)=\pm \frac{\sqrt{48}}{7}

\sin(b)=\pm \frac{\sqrt{16}\sqrt{3}}{7}

\sin(b)=\pm \frac{4\sqrt{3}}{7}

So since b is a number between 0 and \pi, then sine of this value is positive.

This implies:

\sin(b)=\frac{4\sqrt{3}}{7}

So \tan(b)=\frac{\sin(b)}{\cos(b)}=\frac{\frac{4\sqrt{3}}{7}}{\frac{1}{7}}.

Multiplying both top and bottom by 7 gives:

\frac{4\sqrt{3}}{1}= 4\sqrt{3}.

Let's put everything back into the first mentioned identity.

\tan(a-b)=\frac{\tan(a)-\tan(b)}{1+\tan(a)\tan(b)}

\tan(a-b)=\frac{\frac{2\sqrt{5}}{5}-4\sqrt{3}}{1+\frac{2\sqrt{5}}{5}\cdot 4\sqrt{3}}

Let's clear the mini-fractions by multiply top and bottom by the least common multiple of the denominators of these mini-fractions. That is, we are multiplying top and bottom by 5:

\tan(a-b)=\frac{2 \sqrt{5}-20\sqrt{3}}{5+2\sqrt{5}\cdot 4\sqrt{3}}

\tan(a-b)=\frac{2\sqrt{5}-20\sqrt{3}}{5+8\sqrt{15}}

4 0
3 years ago
It is possible none of the choices is the solution?
velikii [3]

Answer:

I am pretty sure the answer would be B!

Hope this helps

Mark me brainliest if I'm right :)

6 0
3 years ago
The probability of winning a certain lottery is 1/77076 for people who play 908 times find the mean number of wins
Alex73 [517]

The mean is 0.0118 approximately. So option C is correct

<h3><u>Solution:</u></h3>

Given that , The probability of winning a certain lottery is \frac{1}{77076} for people who play 908 times

We have to find the mean number of wins

\text { The probability of winning a lottery }=\frac{1}{77076}

Assume that a procedure yields a binomial distribution with a trial repeated n times.

Use the binomial probability formula to find the probability of x successes given the probability p of success on a single trial.

n=908, \text { probability } \mathrm{p}=\frac{1}{77076}

\text { Then, binomial mean }=n \times p

\begin{array}{l}{\mu=908 \times \frac{1}{77076}} \\\\ {\mu=\frac{908}{77076}} \\\\ {\mu=0.01178}\end{array}

Hence, the mean is 0.0118 approximately. So option C is correct.

4 0
3 years ago
Al oeste de Albuquerque, Nuevo México, la carretera 40 con rumbo al este es recta y tiene una fuerte pendiente hacia la ciudad.
alexgriva [62]

Usando el concepto de pendiente, se encuentra que el cambio en la distancia horizontal es de 10 pies.

La pendiente de una reta es la <u>razón entre el cambio vertical y el cambio horizontal,</u> o sea, cual el cambio vertical cuando el cambio horizontal es de 1.

En este problema, hay que:

  • La pendiente es -100, o sea, cuando hay un desplazamiento de un pie por adelante, hay una queda de 100 pies.
  • Bajado 1000 pies, entonces, aplicando la proporción:

1 pie H -> -100 pies V

x pie H -> -1000 pies V

Aplicando la multiplicación cruzada:

-100x = -1000

100x = 1000

x = \frac{1000}{100}

x = 10

El cambio en la distancia horizontal es de 10 pies.

Un problema similar es dado en brainly.com/question/24766917

3 0
3 years ago
Other questions:
  • Find a unit vector that is orthogonal to both
    5·1 answer
  • Jejehrhehekjejrbehjehrbebe
    13·2 answers
  • Evaluate -6 to the 2nd - 28 ÷ 4 + (-9).
    13·1 answer
  • В та<br> If B = 49°13' and b - 10 find a<br> a. 4.6<br> b. 8.6<br> C.<br> d.<br> 5.4<br> 6.5
    11·1 answer
  • Find a mixture that will make the same shade of green but a larger amount
    6·1 answer
  • Find the slope of each of the lines below:
    13·1 answer
  • The price of a pair of shoes is $52. The price is 15% lower than last week.
    14·2 answers
  • Convert 280 degrees per minute to radians per second
    7·2 answers
  • HELPPPPP PLEASEEEEEEEEEEEEEE
    8·1 answer
  • I suck at shapes so uh thanks
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!