Answer: 110000
Explanation:
26/9=30.5555555556
30.5555555556 x 60=1833.33333333
110000 x 60=110000
Answer:
42.6 m
Explanation:
mass of crate m = 53 kg
coefficient of kinetic friction, μ = 0.36
acceleration due to gravity, g = 9.8 m/s^2
Force, F = 372.098 N
Net force, f = F - friction force
f = 372.098 - μ m x g = 372.098 - 0.36 x 53 x 9.8
f = 185.114 N
acceleration, a = f / m = 185.114 / 53 = 3.49 m/s^2
initial velocity, u = 0
time, t = 4.94 s
s = ut + 1/2 at^2
s = 0 + 1/2 x 3.49 x 4.94 x 4.94
s = 42.6 m
Answer:
the work is done by the gas on the environment -is W= - 3534.94 J (since the initial pressure is lower than the atmospheric pressure , it needs external work to expand)
Explanation:
assuming ideal gas behaviour of the gas , the equation for ideal gas is
P*V=n*R*T
where
P = absolute pressure
V= volume
T= absolute temperature
n= number of moles of gas
R= ideal gas constant = 8.314 J/mol K
P=n*R*T/V
the work that is done by the gas is calculated through
W=∫pdV= ∫ (n*R*T/V) dV
for an isothermal process T=constant and since the piston is closed vessel also n=constant during the process then denoting 1 and 2 for initial and final state respectively:
W=∫pdV= ∫ (n*R*T/V) dV = n*R*T ∫(1/V) dV = n*R*T * ln (V₂/V₁)
since
P₁=n*R*T/V₁
P₂=n*R*T/V₂
dividing both equations
V₂/V₁ = P₁/P₂
W= n*R*T * ln (V₂/V₁) = n*R*T * ln (P₁/P₂ )
replacing values
P₁=n*R*T/V₁ = 2 moles* 8.314 J/mol K* 300K / 0.1 m3= 49884 Pa
since P₂ = 1 atm = 101325 Pa
W= n*R*T * ln (P₁/P₂ ) = 2 mol * 8.314 J/mol K * 300K * (49884 Pa/101325 Pa) = -3534.94 J
Answer:
It would be 2600
Explanation:
M/S stands for meters per second. If it moved 1 meter for 2600 seconds, than it would be 2600. You just multiply 2600 by 1! I hope this helps :D
The most common form of angina is stable angina.
C. stable