Answer:
56972.17K
Explanation:
P = 4.06kPa = 4.06×10³Pa
V = 14L
n = 0.12 moles
R = 8.314J/Mol.K
T = ?
We need ideal gas equation to solve this question
From ideal gas equation,
PV = nRT
P = pressure of the ideal gas
V = volume the gas occupies
n = number of moles
R = ideal gas constant
T = temperature of the gas
PV = nRT
T = PV / nR
T = (4.06×10³ × 14) / (0.12 × 8.314)
T = 56840 / 0.99768
T = 56972.17K
Note : we have a large number for temperature because we converted the value of pressure from kPa to Pa
Answer:
P2 = 19.2atm
Explanation:
Initial pressure (P1) = 16atm
Initial temperature (T1) = 340K
Final temperature (T2) = 408K
Final pressure (P2) = ?
This question involves the use of pressure law
Pressure law states that the pressure of a fixed mass of gas is directly proportional to it's temperature provided that volume is kept constant.
Mathematically,
P = kT, k = P / T
Therefore,
P1 / T1 = P2 / T2 = P3 / T3 = ......=Pn / Tn
P1 / T1 = P2 / T2
We need to solve for P2
P2 = (P1 × T2) / T1
Now we can plug in the values and solve for P2
P2 = (16 × 408) / 340
P2 = 6528 / 340
P2 = 19.2atm
The final pressure (P2) of the gas is 19.2atm
Answer:
1)If I mixed salt in water I would expect the salt to: dissolve.
2) If I mixed starch in water I would expect the starch to: remain undissolved.
Explanation:
Hello,
In this case, since salt, which is commonly known as sodium chloride (NaCl) is an ionic compound, it is very likely to get dissolved in water, therefore, we would expect the salt to dissolve and form a liquid solution.
Moreover, since start is mainly composed by C-C, C-O and C-H bonds which are nonpolar, it we can say it is usually insoluble in water, therefore we will expect starch to remain undissolved but undergoing a process called gelatinization in which a suspension in formed until a slightly solid consistency.
Best regards.