A. Genus and B. Species are also major levels of classification.
Answer:
10.32874 m
Explanation:
= Atmospheric pressure = 101325 Pa
g = Acceleration due to gravity = 9.81 m/s²
h = Height of water
= Density of water = 1000 kg/m³
If the walls of the tube do not collapse that means that maximum pressure inside will be the atmospheric pressure
Atmospheric pressure is given by

The maximum height to which Superman can lift the water is 10.32874 m
On the Moon there is no atmosphere so no atmospheric pressure which means when the straw is placed in water water will not rise in the tube.
Answer:
We know that the speed of sound is 343 m/s in air
we are also given the distance of the boat from the shore
From the provided data, we can easily find the time taken by the sound to reach the shore using the second equation of motion
s = ut + 1/2 at²
since the acceleration of sound is 0:
s = ut + 1/2 (0)t²
s = ut <em>(here, u is the speed of sound , s is the distance travelled and t is the time taken)</em>
Replacing the variables in the equation with the values we know
1200 = 343 * t
t = 1200 / 343
t = 3.5 seconds (approx)
Therefore, the sound of the gun will be heard at the shore, 3.5 seconds after being fired
Answer: (2) Use the Momentum Principle.
Explanation:
In fact, it is called the <u>Conservation of linear momentum principle,</u> which establishes the initial momentum
of the asteroids before the collision must be equal to the final momentum
after the collision, no matter if the collision was elastic or inelastic (in which the kinetic energy is not conserved).
In this sense, the linear momentum
of a body is defined as:

Where
is the mass and
the velocity.
Therefore, the useful approach in this situation is<u> option (2)</u>.
It's (whatever number comes after 'hold') divided by 2.5 .