Answer:

Explanation:
To answer the question, we just need to consider the motion along the horizontal direction.
The component of the initial velocity of the ice skater along the x-direction is:

where u = 2.25 m/s is the initial velocity and
is the angle.
The component of the final velocity of the ice skater along the x-direction is

where u = 4.65 m/s is the final velocity and
is the angle.
The acceleration along the x-direction is given by

where
t = 120 s is the time
Substituting,

Answer:
(a). The change in the average kinetic energy per atom is
.
(b). The change in vertical position is 2413 m.
Explanation:
Given that,
Mass = 40.0 u
The increased temperature from 286 K to 362 K.
(a). We need to calculate the change in the average kinetic energy per atom
Using formula of kinetic energy

Put the value into the formula


(b). The change in potential energy of the container due to change in the vertical position
We need to calculate the change in vertical position
Using formula of potential energy




Hence, (a). The change in the average kinetic energy per atom is
.
(b). The change in vertical position is 2413 m.
Constant acceleration of plane = 3m/s²
a) Speed of the plane after 4s
Acceleration = speed/time
3m/s² = speed/4s
S = 12m/s
The speed of the plane after 4s is 12m/s.
b) Flight point will be termed as the point the plane got initial speed, u, 20m/s
Find speed after 8s, v
a = 3m/s²
from,
a = <u>v</u><u> </u><u>-</u><u> </u><u>u</u>
t
3 = <u>v</u><u> </u><u>-</u><u> </u><u>2</u><u>0</u>
8
24 = v - 20
v = 44m/s
After 8s the plane would've 44m/s speed.
Explanation:
Below is an attachment containing the solution.