9 × 10²¹ electrons flow through a cross section of the wire in one hour.
<h3>What is the relation between current and charge?</h3>
- Mathematically, current = charge / time
- In S.I. unit, Charge is written in Coulomb and time in second.
<h3>What is the amount of charge flown through a wire for one hour if it carries 0.4 A current?</h3>
- Charge= current × time
- Current= 0.4 A, time = 1 hour= 3600 s
- Charge= 0.4× 3600
= 1440 C
<h3>How many numbers of electrons present in 1440C of charge?</h3>
- One electron= 1.6 × 10^(-19) C
- So, 1440 C = 1440/1.6 × 10^(-19)
= 9 × 10²¹ electrons
Thus, we can conclude that the 9 × 10²¹ electrons flow through a cross section of the wire in one hour.
Learn more about current here:
brainly.com/question/25922783
#SPJ1
Answer:
The outbreak of tornadoes that tore across the Gulf and the East Coast Tuesday and Wednesday was unusual for two reasons. For one thing, the severe weather encompassed a significant swath of the country. For another, winter is the least likely time for tornadic thunderstorms.
Explanation:
The outbreak of tornadoes that tore across the Gulf and the East Coast Tuesday and Wednesday was unusual for two reasons. For one thing, the severe weather encompassed a significant swath of the country. For another, winter is the least likely time for tornadic thunderstorms.
And yet tornadoes are an expected part of life in the United States—especially in the multi-state area known as Tornado Alley. (Florida, too, sees a disproportionately high number of tornadoes, because of its frequent thunderstorms.) The United States gets more tornadoes, by far, than any other place on the planet. It averages about 1,250 twisters a year. Canada, which sees about 100 tornadoes per year, is a “distant second,” according to the National Centers for Environmental Information.
<h3><u>Answer;</u></h3>
Mechanical advantage
<h3><u>Explanation;</u></h3>
- Mechanical advantage is the ratio of force output from a machine divided by the force input into the machine.
- Mechanical advantage measures the machine's force-magnifying effect. It is an advantage gained by using simple machines to accomplish work with less effort.
- The formula is; M.A = output force/ Input force