Answer:
The direction is due south
Explanation:
From the question we are told that
The energy of the electron is 
The earths magnetic field is 
Generally the force on the electron is perpendicular to the velocity of the elecrton and the magnetic field and this is mathematically reresented as

On the first uploaded image is an illustration of the movement of the electron
Looking at the diagram we can see that in terms of direction the magnetic force is


generally i cross k = -j
so the equation above becomes


This show that the direction is towards the south
I can't decide between A and B, but B seems more likely to me. Even though the molecules don't look like they're moving, the area of contact is slightly more compressed.
Answer:
h = 618.64 m
Explanation:
First we need to calculate the height gained by rocket while the fuel is burning. We use 2nd equation of motion for that purpose:
h₁ = Vit + (1/2)at²
where,
h₁ = height gained during the burning of fuel
Vi = Initial Velocity = 0 m/s
t = time = 7 s
a = acceleration = 8 m/s²
Therefore,
h₁ = (0 m/s)(7 s) + (1/2)(8 m/s²)(7 s)²
h₁ = 196 m
Now we use 1st equation of motion to find final speed Vf:
Vf = Vi + at
Vf = 0 m/s + (8 m/s²)(7 s)
Vf = 56 m/s
Now, we calculate height covered in free fall motion. Using 3rd equation of motion:
2ah₂ = Vf² - Vi²
where,
a = - 3.71 m/s²
h₂ = height gained during free fall motion = ?
Vf = Final Velocity = 0 m/s (since, rocket will stop at highest point)
Vi = 56 m/s
Therefore,
(2)(-3.71 m/s²)h₂ = (0 m/s)² - (56 m/s)²
h₂ = 422.64 m
So the total height gained will be:
h = h₁ + h₂
h = 196 m + 422.64 m
<u>h = 618.64 m</u>
Answer:
The answer is "
"
Explanation:

momentum before:


momentum After:


Calculating the conservation of momentum:

